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Impact of isospin breaking on the distribution of transition probabilities
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In the present paper we investigate the effect of symmetry breaking in the statistical distributions of reduced
transition amplitudes and reduced transition probabilities. These quantities are easier to access experimentally
than the components of the eigenvectors and were measured by AdaingPhys. Lett. B422 13 (1998]
for the electromagnetic transitions #Al. We focus on isospin symmetry breaking described by a matrix
model where both the Hamiltonian and the electromagnetic operator break the symmetry. The results show that
for partial isospin conservation, the statistical distribution of the reduced transition probability can considerably
deviate from the Porter-Thomas distribution.

PACS numbd(s): 05.45—a, 24.60.Lz, 11.30.Er

I. INTRODUCTION breaking of a point-group symmetry in a resonating quartz
The spectral fluctuations in a rich variety of different block [7], and the coupling of two chaotic microwave bil-
physical systems show, if measured on the scale of the loc4prds[8]. Both cases, although physically very different, are
mean level spacing, very similar features. This high degrestatistically fully equivalent to symmetry breaking in quan-
of universality makes it possible to describe these fluctuatym mechanics. Importantly, there is only one parameter en-

tions with random matrices. Random matrix theGRMT) is ten?ﬁ) the ;andom matrix mtoij_elz It IISCa ulnlqlée m?r_:lsuqe, e.gt.,
a simple, schematic model in which the matrix elements o or the root-mean-square statistica’ ~oulomb matrix element.

the Hamiltonian in some basis are replaced with randon) his illustrates that the random matrix model is the ideal tool

numbers. Apart from randomness, the only further input ard0 extract a root-mean-square symmetry-breaking matrix el-

the symmetries and invariances of the system, in particula?mAetht:]rom ﬂle d(_jata. 4d d theectralfluctuati

time reversal invariance. It turns out that this assumption of . ese studies addressed tsgectrafiuctuation prop-
full ergodicity or “chaoticity” leads, in many cases, to a erties. Symmetr_y breakmg, however,_ will also have an im-
complete and parameter-free description of the spectral flur,QaCt '?'n thte f;]at'St'C; of tTaV: dfunct|o|\r/1|§;anhd ItlnbseEiViaSbr:gs
tuations. Such universal cases are said to be of the Wignef—enSI Ive 10 them. Recently, Adams, MIlChet, an riner
Dyson type. We refer the reader to the reviews in Ref<]. 9] collected reduced/—ra;%/ transition prqbablhues from d|f-
Originally, Wigner had developed this approach in nuclearferent experiments on~Al. As me”t'oﬂe_d above, this
physics where it continues to find new applications. nucleus had already shown a strong deviation ofsiiwectral

In recent years, interest has been focused on deviatior{gmtu.":monS fr.om the universal Wigner-Dyson result dl.Je to
Y Isospin breakind4]. The new result$9] show that the dis-

from the universal, parameter-free Wigner-Dyson fluctua- buti f th L babilti | iderably d

tions. The deviations can have different reasons, such d%§ tut|ofn 0 tthetr\(/slvr)5|t|0n[}:))ro a |t|t|§st_asq conf5| erf;‘ yd' et_'

regular effects competing with full chaoticity or the breaking viates from the vWigner-Uyson stalistics, 1.€., rorp € 'f -
bution that corresponds to full, parameter-free “chaos.” In

of time-reversal invariance, see RE2]. Here, we wish to h " Tibut “h 10 di h its. T
discuss deviations attributed to the breaking of isospin sym—h.e preg,en contrl 3 't?]n' we(;/ws 0 { |_scussd les;ce rgs? s. 10
metry. We recall that symmetries such as isospin or parit)} IS end, we extend the random matrix model o FE 1.to

are, in contrast to time-reversal invariance, associated witﬂ's‘CUSS tran§|t|on probabilities. $|m|Iar Investigations were
guantum numbers. In the context of spectral fluctuations anferformed simultaneously an'd mdepende'ntly by Andersen
RMT, symmetry breaking already received broad interest?t aI._[lO] for symmetry breaking in acoustic and elastome-
see the compilation in Ref2]. As early as 1960, Rosen- chanical systems.

zweig and Portef3] analyzed atomic spectra by setting up ar v-:—(?vlvS &aepirxlpse(r)i:g:r?;;?dreassulig”gﬁlst.hlg rSe%Cu.cltlet;N (tarak\)rzlsﬁrilgn
eneral random matrix model which describes crossove e . .
d robabilities in?®Al collected by Adams, Mitchell, and Shri-

transitions between different angular momentum couplin . . .
schemes. In the late eighties, Mitchell al. [4] measured er[9]. In Sec. il we d|scqss the random matrix r_nodel n
and analyzed about 100 low-lying states with known vaIuest.he case that no symmetry I present, in particular 1ts predic-
of the isospin quantum number in the nucléal. In Ref.  t1ONS for transition probabiliies. The random matrix model
or isospin breaking is numerically studied in Sec. IV. In

[5], this was discussed in the framework of a random matri ) : g X )
model which is a special case of the Rosenzweig-PortePcC: V the numerical simulation is approximated by a quali-

model. An estimate for the statistical Coulomb matrix eIe—f[atiVe albeit analytical model. The data gnalysis Is performgd
ment, i.e., a measure for the degree of isospin breakin n Sec. VI. The summary and conclusion are presented in
could be obtained. Motivated by similar questions in molecu- ec. Vil.
lar physics, Leitner and co-workef6] performed a pertur-

bative calculation of the spectral fluctuations in the random
matrix model. More recently, additional data were obtained Experimental reduced electromagnetic transition strengths

in two statistically highly significant experiments on the between the excited states of the nuclédal have been

Il. EXPERIMENTAL RESULTS
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collected by Adams, Mitchell, and Shriner, see R 1.0 . s S S S S
Their data involve levels between the ground state and the B(XL,7) values in ~Al
excitation energy of 8.067 MeV. In this region, states with Porter—Thomas
isospinT=0 andT=1 are found and isospin is known to be JHL

approximately conserved. + }

©
S

The probabilityB;; of a transition from the initial con-
figuration|i) to the final configurationf) is the square

©
o

Bir=|W|? (1)

©
IS

of the matrix element

Wi =(f|Oli) 3]

o
2

probability density

of the relevant transition operatét in a special basis.
Approximately 180 levels and 1500 electromagnetic tran-

sitions are known. The fluctuations of tBg values shall be

studied. To this end, their systematic dependence on the 7

guantum numbers of the initial and final states must be re-

moved. This has been done in REd] in the following way. FIG. 1. The distribution of experimental reduced transition

The states irf°Al have been characterized by their excitation probabilitiesB(XL,7) in %Al from Ref. [9]. The quantityB has

energyE, spin J, parity 77, and isospinT. Transitions are been transformed to the logarithmic variablef Eq. (6). The curve

characterized by their electromagnetic charactewhich  labeled Porter-Thomas is the distributit).

may be& or M, their multipolarityL, and a label which

becomes isoscalaflS) if AT=0 and isovectoriallV) if The fact that the variance of the Gaussian functions has been

AT=1. Hence, both the transition operatét=O(XL,r)  chosen equal to 4 is discussed in Réfl].

zl)
|
-
o
-

and the transition probabilitieB;; = B;; (XL, 7) are functions It is clear that the definition of the quantitiey
of X, L, and7. We shall, however, not always write all these =Y(E; ,Es) requires the necessary spectroscopic information
arguments. for the relevant states iR°Al. Furthermore, the local aver-

A transition sequences defined as a set of reduced tran- agesD and (B(E; ,E;)) require that there is a minimum
sition probabilities where the initial states have a commoriumber of members in the sequences from which these av-
assignmend™, T, the final states have a common assignmengrages are derived. These restrictions have finally led in Ref.
J'’™ T’, and the transitions have their three defining charlg] to an ensemble of 873 values wf . .
acteristics all the same. Thus the reduced transition prob- 'he authors of Refd.9,11] have found it convenient to
abilitiesB,;=B(E; ,E;) of a given transition sequence can be ransformy to the logarithmic variable
labeled by the energieg; and E; of the initial and final
states, respectively. The aforementioned secular variations of z=logyoy- (6)

the B values were removed by normalizing them to the local ) o o )
average valuéB(E; ,E;)) of B(E; ,E;) so that the statistical The experimental distribution afis given by the histogram

variable used further on is on Fig. 1. Although the widthsAz, of the bins k
=1,...,18 inFig. 1 vary, the ordinate is the probability
B(E; ,E¢) density with respect ta: The heightp, of the kth bin is
y(E; ,Ef):m- )
i E=f Nk
The local average is defined with the help of weighting fac- Pk~ A_zk )

tors that are Gaussian functions of the excitation energies. In

doing so one must, however, remove the systematic depefyheren, is the number of cases falling into tiéh bin.
dence of the local level distan on the excitation energy; Since the statel§) and|f) are believed to be “very com-
.e., one measures the energy in unitdoénd works with @ - jicated” it is natural to assume that the matrix elemegis

dimensionless energy have a Gaussian distribution; see the discussion in Sec. Il B.

E This entails thay has a Porter-Thomas distribution with unit
e=5- (4) average value, i.e.,

The details are given in RdfL1]. The local average of the 1 exp—y/2)

. - . Ply)= ——=——+. (8)
values of a given transition sequence is then [2m Jy
> B(e,e’) e (cime)Bg—(e1—<")?8 Transforming this to the variableyields
Blej o) =" .
(B(ei,er)) I © In(10) _ .

> e (eime) B (eg P(z)= —— 1072 exp(— 107/2). 9
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A comment on the notation is in order: For every probability Here, we have introduced the notatiG{a, o) for a Gauss-

density we shall use the symb@l The fact that we deal with ian with variances?.

different functions will be clearly indicated by the argument The wave functions are rarely accessible in an experi-

of the probability density in question. ment. However, other observables, such as scattering matrix
The distribution(9) is given in Fig. 1 for comparison with elements or partial widths, sensitively depend on them. Con-

the data. The distributiof®) is normalized to unity; the his- sider the scattering from a statevith wave functionu; into

togram of the data, however, has been normalized to a channet with channel wave functioly.. The correspond-

18 ing reduced partial width amplitudg,. can be written as

> plAz=0.83 (10 N
k=1

'Yic:mE:l UimJme, (13
by the authors of Ref9]. This is motivated12] by the fact

that fdz F(2) over the range of the data amounts to 0.83 andyhereJ s the overlap integral between theh canonical

approximately takes care of the upper and lower detectio,«is vector andy.. Again, the probability density can be
thresholds. worked out

The point of Ref[9] is the shift of the experimental dis-
tribution with respect to the Porter-Thomas distribution T(N/2) ( . )(N—s)/z

P(z). The maximum of the histogram occurs arourw P(y)= — -

—0.5. The maximum oP(z) occurs az=0. The authors of (mNYHYT(N—-1)/2) Ny?

Ref. [9] have conjectured that the discrepancy between the (14

experimental data and the Porter-Thomas distribution may be

a consequence of isospin breaking 4?Al. The following ~ Where we suppress the indiceandc. The second moment

sections of the present paper focus on this conjecture. In theadsy?= ?’izc: N‘lzﬁzl\]ﬁm. We notice that the functional

next section, a random matrix model of isospin violation—form of this distribution agrees with that of E@.1). Thus, in

and more generally of symmetry breaking—is presented. the limit of largeN, one again finds a Gaussian. Usually, one

introduces the partial widtl' = y? which can be measured.
Il. RANDOM MATRIX MODEL — THE CASE OF NO The relative partial widtty=T"/T" with I = y? is distributed
SYMMETRY according to the Porter-Thomas ld®).
We notice that the Porter-Thomas law or, equivalently,

In Sec. Il A, we briefly review the distributions of wave : . . .
. . ) . the Gaussian for the partial width amplitudgsresults from
functions and widths for the standard Wigner-Dyson case i, largeN expansion gf the distributi(?nl4). Alternatively,

which no symmetry is present. A more detailed presentatio%ne may derive these largé results by using the central

e e et horem Th partal wlh ampitdes re accordng
Eqg. (13), given as a linear combination & components
for the same case. .
Uim . If, @as assumed in Eq14), all these components are
_ _ independently distributed, the distribution of the partial
A. Wave functions and decay amplitudes width amplitudes approaches a Gaussian for la¥gerhis
If the system is invariant under time reversal, the wavdine of arguing does not use the fact that the distribution of
functions can be chosen real and t& N random matrixd ~ every single componert,,, is Gaussian for larghl. It would
modeling the Hamiltonian is real and symmetric. The matrixapply for any smooth distribution af;,,, provided it does
elements are Gaussian distributed random numberddaisd ot sensitively depend dN. This subtle point will be impor-
said to be in the Gaussian orthogonal ensenf@l®F). In  tantin Sec. IV A.
the physically relevant limit of infinitely many statesl
— o0, the fluctuation properties are of Wigner-Dyson type. A B. Transition matrix elements
wave function is modeled by an eigenvectar, i
=1,... N of H, i.e., we haveHu;=E;u;, whereE; is the
eigenenergy.
We are interested in the probability densRya) of find-
ing the valuea with —1<a< +1 for a component;, of the
eigenvectouw; . For finite N one finds

The results compiled in Sec. Il A apply to the partial
widths and to their amplitudes. However, in the experiments
on 26Al, electromagnetic transition probabilitieB;;(XL)
were measured which are squares of transition matrix ele-
ments according to Eq¢l) and (2). In Refs.[13,14] it is
argued that the distribution of the transition matrix elements

T(N/2) Wi; is, once more, of the formil1) and(14). In the present
Py(a)= (1—a?)(N=3)2, (12) section, however, we give a derivation, valid for lariye
JrT (N—1)/2) which is well suited for the discussion of isospin breaking in
_ Sec. IV.
The second moment of this distribution a&=1/N. For a In our model the initial statéi) and the final stat§f) are
large number of levels one obtains a Gaussian with varianCgspresented by the eigenvectorsandu;, respectively. The
1IN, ie., electromagnetic transition operat@(XL) is modeled by

one fixed random matrix. It is not necessary to consider an
ensemble of such operators. Thus, the transition matrix ele-

_ —12
=G@N". (12 eniswi (XL) are given by

N N )
PN(a)= EGX —Ea
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1
Wi (XL)=Uf O(XL) U= 3 UgnOpn(XL)Uim - (19) 0= 02, (21)
N

The transition probabilities realli (XL)=|Wii(XL)|%. Al \ye assume that the matrix elemedis,(XL) do not depend
though these quantities differ from the partial widths andy, N Hence, collecting everything, the Fourier transform in
their amplitudes, it is intuitively obvious that, for largje the Eq. (18) yields

Wi;s(XL) are Gaussian distributed and that Bjg(XL) obey
a Porter-Thomas law: Since we always considerf, the _ 212
. L ; P(Wis)=G(W;;,0° ), 22
Wi;¢(XL) are linear combinations dproducts of two inde- (Wir) =G (Wi ) 22
pendent variables and, therefore, the central limit theorenynich is the expected resullt.

applies.
W Mr(;raedé)remsely, the distribution of the matrix elements IV. RANDOM MATRIX MODEL — THE CASE
if OF ISOSPIN BREAKING
_ In Sec. IV A, the model is set up for the case that isospin
P(Wi¢)= du-Pu»fdu P(us) (Wi —u; Ou;), _ _ : . . '
(Wip) j LuidP(up) | dlugdP(up 6(W—ur Ouy) is partially conserved. In Sec. IV B, numerical simulations

(16) are described. Note that we speak of isospin breaking be-
cause we have in mind the experiment of Sec. Il. The model,
however, applies to any other quantum number that is par-
tially conserved.

where we suppress the argumit of W;; andO. Since we
may assume thall is large, the distributions of the compo-
nentsu;,, and us,, take the form

A. Definition of the model
P(u)= H iy exr{ ) We consider two isospin valuds=0 andT=1. If isos-
pin were fully conserved, the Hamiltonighwould be block
I'N N diagonal. The Coulomb interaction, however, destroys this
Z( ﬂ) ex% U U) (17 symmetry. In Ref[5], this was modeled by using random
matrices of the form
with u standing for eithew; or u;. We notice that the inte- H(0) 0 0 H
gration domain for each of the eigenvector components is the :[ }Jr o € (23)
interval[ — 1,4+ 1]. However, since we consider the larlje 0 H(1) HE o
limit, the distributions(17) are so sharply peaked at the ori-
gin that we may extend the domain of integration to thewhereH(j), j=0,1 are independent GOE matrices with di-
entire real axis. Using the Fourier transform of theunction ~ mensionN;. The total level number isN=Ny+N;. The
in Eq. (16) we have NoX N; matrix He accounts for the Coulomb interaction. It

is real without further symmetries and has Gaussian distrib-
1 ) uted entries. In this model the parameteis proportional to
P(Wir) = ZJ;O dtexp(itWi)R(t,0). (18 the root-mean-square Coulomb matrix element. SiH¢)
andH have positive and negative entries with equal weight,

The Gaussian integrals absorbedRitt,®) can be done eas- all observables can only depend on the modulus,dfut not

ily, on its sign. Thus, in the sequel, we restrict ourselves to
=0. We recall that thepectralfluctuations are measured on
N\ 2N the scale of the local mean level spacidg Thus, the rel-
RLO)=| V35—~ f d[Ui]f dlug] evant parameter governing the spectral fluctuations is
><exp( N[UT " Iy itOIN {ui ) A=alD. (24)
T o LY fdls
2 ItO/N Iy Jluy For =0 we have a noninteracting superposition of two

= det Y1+ t202/N?) independent GOE's. In this case, the distribution of the ei-
genvector components of tiel matrix H, i.e., including the

1 many exact zeros, is given b
=ex;{ -5t In(Iy+t20?/N?)|. y g y

(19

Py, (2,00 =0g5Pn (8) +g7Py,(a) + 29091 8(a), (25)
We are interested in largd. This allows us to expand the

logarithm and to keep only the first term whicht’€)2/N2.  where we have introduced the fractional level numbers
Thus we have for largd,

02
R(t,0)=exp( - th)’ (200 The distributionsPy, (a), j=0,1 have to be taken as either
Eqg. (11) or Eg. (12). Obviously, the total distribution
where the second moment of the operator is defined by PNONl(a,O) is properly normalized.
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As discussed in Ref5], the variances of the distributions will appear only if the basis vectors have well-defined isos-
for the matrix elements are chosen in such a way that thein. In general, the wave-function components are functions
spectra ofH(0) andH(1) have the same length and thét of a. These functions parametrically depend lnThis N
becomes a fullNXN GOE matrix [15] for a=1 if N;  dependence competes with a lalgexpansion needed in the

=Nj. This also means that derivation of the central limit theorem, whose premises are
therefore violated. We illustrate this in Sec. IV B by numeri-
Pnizne(@,1)=Py(a). (27)  cal examples.

For a=1 but No# N, there are some deviations from the

pure GOE results B. Numerical simulation

For arbitrarya, the distributionPy . (a,a) is not known The distributions of the reduced transition amplitudes and
analytically. A qualitative model is Oprésented in Sec[e¢e reduced transition probabilities were numerically investi-
Eq. (37)]. gated. To this end, random Hamiltonians with the structure

of Eq. (23) have been constructed. The dimensidhsand

N, were chosen to be 100 so thdthas the dimensiolN
=200. The elements dfi(j), j=0,1, were selected by a
generator of Gaussian random numbers such that the second
moments were

The transition matrix elementd/;;(XL) and the corre-
sponding transition probabilitie;; (XL) depend not only on
the eigenstates; of H, but also on the transition operator
O(XL). Since the latter contains the effective charges or th
magneticg factors of proton and neutron, it causes isospin
breaking in addition to the isospin breaking built into Eq. _

(23). Thus, in the same isospin basis that was used in Eq. OV H o (0)= Oupar B #8006
(23), we may model the transition operator by a matrix of the

vu' s

form Hmn(l)Hm’n’(l):5mm’5nn’+5mn’5nm’ ) (30)
00) 0 0 O¢ (He)um(He) wrm = 6 Sy -
0=8 0o o1 +Bc ol 0o (28) _ _ _
(1) C This ensures thad is a full GOE matrix fore=1. The mean

spacingD; of the eigenvalues dfi(j) is then(in the center

Here, each of the matriceS(j), Oc will be modeled by ¢ o spectrum
r

one fixed random matrix—as described in Sec. IV B. Fo

later convenience) has been written as a func.tion of the Djszj’l’Zzo.314. (31)
two parameterg, and 8. However, only the ratio
The mean level spacinD of H is
B=BclB, (29 pacing

— -1 -1\-1_
is important since the total strength 6f drops out of the D=(Do +D, ") "=0.157. (32)

observabley of Eq. (3). For =0, configurations with dif- ] ) ) )
ferent isospin values are not mixed Bywhile for 8=1 the This value changes little, whea is varied between 0 and
mixing is maximal. For8— = the operator® couples con- 0.157. This range of values was considered in the present
figurations with different isospin only. numerical simulations. The parameterof Eq. (24) then

We are interested in the distribution of thié;(XL) and ~ COVers the range of@?\sl.o. Ten Hamiltonians were con-
the B;;(XL). According to the discussion in the previous Structed and diagonalized for each valueof
Sec. lll, one is tempted to argue as follows: Since @§) is The transition operato® was constructed very much as
general and also holds in the presence of conserved or br§?€ Hamiltonians, i.e., its elements were selected by the ran-
ken isospin, the transition matrix elemems;(XL) are al- dom number ge_nerator. The variances were chosen in com-
ways a linear combination of products of independently disPlete analogy with Eqs30). However, for each value g8,
tributed sets of variables,, anduy, . Thus, the central limit ©N€ operator has been generated. The range<o€1.0
theorem should apply and we should obtain a Gaussian digv@s covered. . _
tribution for theW,(XL). This should even be true for any ~ FOr given parameters, j the transition amplitude€l5)

smooth distribution for the wave-function components, ~ have been calculated with the indice$ running over the
and u;,. In other words, the specific form of these latter €ig€nvectors of the ten Hamiltonians. The set of P

distributions, which are nontrivial functions of the mixing NUMbPersV; with i>f forms the numerically generated data.
parametek, is not important and we would always expecta !N @ first step, we have checked whether these data follow
Gaussian distribution for the transition matrix elements® Gaussian distribution. To this end one can bin the set of
Wi (XL). However, this reasoning is incorrect, because itWir @ahd compare the histogram to a Gaussian; similarly one
does not make use of a specific basis. In other words: Thean compare the distribution of the varialyief Eq. (3) to
result of this reasoning is an orthogonally invariant distribu-the distribution(8) or the distribution otz of Eq. (6) to P(2)

tion. Within the random matrix modé®3) one sees that this 9iven in Eq.(9). In order to make the comparison—as much
cannot be true. The statistical properties of the HamiltoniarftS POSsible—independent of the parametrization of the sta-
H are not orthogonally invariant—except for the special casdistical variable, the generalized entropy

of no isospin symmetry at all. One sees the lack of orthogo-

nal invariance very clearly in the distributiof25) of the S:_J dx p(x) Inp(x) 33

eigenvector components in the case 0: The § distribution P(x)
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TABLE I. Entropy for different values of the parameteg#sand
\. The parametew is also shown.

B 0 0.02 0.06 0.1 0.4 1.0

N «a
0 0 -1.05 -0.75 -0.53 -0.37 —-0.04 —0.0003
0.0120.002 -0.54 -0.53 -0.40 -0.30 -0.04 —0.0003
0.0190.0083 -0.43 —-0.42 -0.34 -0.26 -0.04 —0.0003
0.0310.006-0.35 —-0.34 -0.29 -0.23 -0.03 —0.0003
0.125 0.02 —0.06 —-0.06 —-0.06 -0.06 -0.01 —0.0003

1.0 0.16—0.0006—0.0006—0.0006—0.0004—0.0004—0.0004

tion p of the data and the ansaz This expression is inde-

pendent of the parametrization Since both,p and P, are
normalized,S is never positive. It vanishes if and only jif ) ;
=P. The data do not, of course, provide a continuous probP!2yed in the parts B and C of Fig. 2.
ability densityp(x) but rather a histogram where tkéh bin
is centered ak, and contributes the probability(x,)AXy .

Therefore they provide the approximation

S~— ; Ax p(X)In

to expression Eq33). To the extent that Eq34) is a good
approximation to Eq(33), expression(34) is independent of

data. In Table I, the entropi4) is given for a few values of

P(X)

P(xy)

(39

distribution of the data does depend on the paramatensd

1941

symmetry is strongly broken. Hence, in this case the transi-
tion amplitudesW;; have a Gaussian distribution. This does
not hold if 8 and A have values much smaller than 1, in
which case neither the Hamiltoniai23) nor the operator
(28) significantly breaks the symmetry.

Figures 2 and 3 illustrate in which way the distribution of
W;; deviates from a Gaussian. Consider the casgef0
=\, i.e., the absence of symmetry breaking, displayed in
Fig. 2(A). There is no transition between different symmetry
classes and therefore about one-half of the matrix elements
Wi;; vanishes. This leads to the narrow peak in FigA)2
comprising one bin centered at zero. This peak is superim-
posed over the distribution of the matrix elements connecting
has been used to express the difference between the distribtfates in one and the same symmetry class. Figuke Bus
corresponds to Ed25) with Ng=N;. When the symmetry is
completely broken—in Fig. ®)—the matrix element§Vi;
have a Gaussian distribution. Intermediate situations are dis-

The intermediate situation is especially well visualized on
Fig. 3, where the distributions of Fig. 2 have been trans-
formed to the logarithmic variable

z=Ilo _—,
Y10 >

W
(35
Wi

which was introduced in Eq6).

Here, the distribution displays two peaks. One of them,
the parametrization. This holds in the present case to withigentered az=0, stems from the matrix elements connecting
a few times 10“ due to the large ensemble of numerical states within one symmetry class. The other one, centered at
negative values o, is due to the matrix elements connecting
B and\ in the range of &3, A<1. One finds that the states from different symmetry classes. In case of complete
symmetry breaking the two peaks merge as in Fid)3
B which govern the symmetry breaking. The entropy ap-This distribution corresponds to E¢P). In the present pa-
proaches zero, whefi or A approach unity, i.e., when the rametrization the case of no symmetry breakifgy. 3A)]
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FIG. 2. Numerically generated
distributions of transition matrix
elementsW;; for four different
pairs of mixing parameterg and
N. The matrix elements are nor-
malized to their root-mean-square
value. The binning of the data is
the same in the four parts of the
figure. The scale of the ordinate is
different in the upper and lower
parts.
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cannot be distinguished from the case of complete symmetrfor the transition operator and we need an ansatz for the
breaking[Fig. 3(D)]. This occurs because— —«~ whenW distributions of the wave functions. The latter ones—in our
—0; hence, the matrix elements with the vaMé=0 are  model of the eigenvector components—are the entries of the

found nowhere on the axis. orthogonal matrixJ which diagonalizes the Hamiltonian,
In Sec. Il it has been described how the secular variations

of the statistical properties of the experimental data of Ref. { U(0) U(01)
= , (36)

[9] have been removed by help of the local average in Eq.

(3). We have applied the same procedure to some of the U(10  U(1)
present numerically generated data sets. Introducing a local
average B;) instead of the global averags =B;; used in  Where the matrice§l(j), j=0,1 areN;xN; orthogonal and
Figs. 2 and 3 does not change the present results, i.e., alot(01) andU(10) areNoxX N; andN; X Ny matrices, respec-
the spectrum of eigenstates there are no secular variations #yely, with the condition that the totd) is orthogonal. Mo-
the statistical properties of the eigenfunctions. tivated by the numerical simulations in the previous section

The numerical simulations clearly demonstrate that ther@nd by the general experience with wave-function distribu-
indeed is an effect of symmetry breaking on the distribu-tions, we assume that the distributions of the entries can be
tions. Hence, it is shown that the complexity of the waveapproximated by Gaussians. More precisely, we estimate that
functions alone is not enough to ensure Gaussian distribithe distributions of theJ(j) matrix elements are roughly
tions of wave function, width, and transition amplitudes, as agiven by G(a,x;N~*?), j=0,1, while those of theJ(01)

naive application of the central limit theorem would imply. and U(10) matrix elements are roughly given by
G(a,7N~*?). Thus, we reduce the problem to the determi-

nation of the three parametekg, «;, and#. It is reason-
able to assume that the former two are functions of the latter
one, i.e., we sek;= «j(»). This is motivated by the fact that
In the present section we discuss the random matrixy can replace the mixing parameter(or \) and that, apart
model in a heuristic fashion. This is an extension of the Secfrom the level numberdly, N,, the distribution of the ele-
1l to the case of broken symmetry. Although we believe thatments ofU is a function of the symmetry breaking. The final
the model of Eqs(23) and (28) can be completely solved task is then to find the relation between the purely phenom-
analytically, we refrain from tackling that task. As we shall enological parametey and the parameter which measures
see, gualitative reasoning will provide sufficient understandthe root-mean-square symmetry-breaking matrix element and
ing of the statistical behavior of the observables. Thus, outhus has a direct physical interpretation. In other words, we
analytical derivations will be approximate and only exact ineventually have to specify the functiop= 7(«).
some limiting cases. Of course, we shall compare our ap- To construct a consistent guess for the functions
proximate results with the above numerical simulations of=«;(#), we notice that, in line with our basic assumptions,
the full model. the combined distribution for the matrix elements of the total
To obtain the distributioP(W) we use the ansat28) U reads

V. QUALITATIVE EVALUATION OF THE RANDOM
MATRIX MODEL WITH BROKEN SYMMETRY
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5 ko(m)) k1(7) I |
PNoNl(a’n)_g(’G(a’ \/ﬁ )+glG(a’ \/N | curve with histogram with |
L n°=0.123 N,=N,=100 |
7 L - |
+2000:G| a,—|. 3 «=0.03
G091 ( \/N) (37) s L |

This form is consistent with the exact resul&b) for arbi- §
trary Ng andN; and(27) for No=N;. We mention in pass- o
ing that we always deal with Gaussian approximations of =’
distributions which, in some limiting cases, are for finite -

4 —]
level number given by Eq11). | |
Let us consider the case=0 which yields the distribu- | i
tion (25). Comparison with Eq(37) shows that | i
7]2(0) - 0 (38) 0 i 1 I 1 1 1 1 I 1 1 1 1 I 1 ]

and —-0.30 -0.15 0.00 0.15 0.30

a
x7(0)=1/g;, j=0,1. (39) FIG. 4. The distribution of the componerdsof the eigenfunc-

_ _ tions ofH. The parameters of the numerical simulation are given on
In the case otv=1 andNo=Nj, the exact resul27) leads e figure. This yields the histogram. The curve is the functai

to with the optimumg.

7(1)=1 (400  premises of the central limit theorem are violated for the
calculations of the distributions of the transition matrix ele-
ments. They cannot be a single Gaussian for all values of the
parameters.

Having fixed all parameters in our qualitative model for
the distribution of the eigenvector components, we can now
calculate the distributions for the transition matrix elements
Wis=ufOu;. We emphasize that this involves, apart from

1y , the largeN limit, no further approximation. We consideér
1- g_) 7%, j=0L (42 %f, such that the initial and final statasandu, are always
! different columns of the matri¥ in Eq. (36). Due to isospin
It is reassuring that similar combinations of parameters ddreaking, we have to distinguish four structurally different
also show up in exact calculations of the spectral correlatorg2ossibilities: in CaséMO00) both u; and us are among the

A reasonable form for the function= 7(a) remains to first No columns. We write
be given. The function will parametrically depend gnand
g;. We construct it by comparing the ans#87) with the Case(M00): u;=
distribution of the coefficients;,, of the eigenfunctions;
from the numerical simulation of Sec. IV B. For each value
of A=alD, the optimumyn was determined by maximizing
the entropy(34). We have not attempted to assign errors to
the values ofy thus found. Instead we have convinced our-
selves by inspection that the ansé&sz) reproduces the nu- 0.8
merical distribution reasonably well. A typical example is
given by Fig. 4. In this way the function= »(«) was gen-
erated numerically. For the caseM§= N, it is displayed in o
Fig. 5 together with the analytical expression

and
kF(1)=1, j=0,1. (41)

Moreover, the functionse;= «;(7) ought to be even im.
This suggests the ansatz

() 1+
K; =

and u;=

Uf(O)}

Uj
u;(10) u¢(10)

1.1|||||||||||||||||||||||

X

N,=N,=100
>< numerical data

— p°=1-exp(-a/0.157)

7%(a)=1—exp— a/0.157) (43
that well approximates it. The numerical constant in the ex- o2
ponential is here equal to the level distance of 8%). We
emphasize, however, that the relati@3) is purely phenom-
enological. In Sec. VI we shall see that E43) can success- —°~1_O ) 02 05 o8 11
fully be applied to the case of°Al, where D is different : ' ' ' '
from Eq. (32), see Eq(78) below, but the difference is not «
too large. Thus it seems that the numerical constant is indeed FIG. 5. The relation betweem and 5 for Ny=N;. The crosses
related to the level distance. This quantity shows a signifi-are from the numerical simulation. The curve is a phenomenologi-
cantN dependence, see E@1). It is at this point where the cal representation of the numerical results.

o
(%]
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In Case(M11), both are from the lasi; columns,

u;(01)
ui(1)

ug(01)

Caseg(M11): u;= ug(1)

and us=

In CasegMO01) and(M10) u; andu; are from different parts
in U; we have

o _|us(0D)
Caseg(M01): u;= u(10) and us= ug(1) |

o [0y [ us0)
Case(M10): u;= u(1) and us= ur(10)|

Thus, for the caseMjj’), j,j’'=0,1 we will obtain a dis-
tribution Pj;,(Wi¢). Because of the symmetri€d"=0© and
Wi =W;;, the CasesM01) and (M10) must yield identical
distributions.

We proceed by generalizing the evaluation of the integral

(16) in Sec. Il B. Again, the distribution

ij’(Wif):J d[Ui]P(Ui)f d[uf]P(uf)é(Wif_uIOUi)
(44)

is rewritten in the form

1 [+
P“r(Wif)=ELOdtexp(itvvif)R”,(t,O), (45

where the main difficulty is the calculation of the function

Rjj,(t,(’))=f d[ui]P(ui)f d[uf]P(uf)exp(—itufTOui).
(46)

In Case(MO00), the distributions of the eigenvectors are

according to our ansatz

P (ﬂ N )NO N 1(0) o))
(uj) 2l e ZKSUI( ui(
N
NV 2772

for the initial state and

X

Ny N
exp( - 2—772uiT(10)ui(10))

(47

N | N
P(Uf):( 2”%) eXp(—Z—K(Z)uf(O)uf(O))
Ny
x| \/ N eXp(—lufT(lo)uf(lo)>
27 n? 279?

(48)

for the final state. CaséM11) is treated similarly. Case
(M01) has a different structure: The initial-state distribution

is as in Eq.(47), but the final-state distribution reads
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[N\ N
P(Uf):( 27”72> GX% - 2—772uf(01)uf(01))
[N \™ N
x( 277K§> exp( — 2—K2uf(1)uf(1)) . (49

1

However, one sees that in every case we may cast46).
into the form

R“/(I,O):C“rf d[U,]f d[Uf]

XeX[{ — g[u,T UI] ’C”/[EL:D

=Cj;, det V2K, . (50)

HereC;;, and C!., collect all normalization constants.

It is straightforward to write down the matricég;. . We
define the diagonal matrices

Do=di (—11 —l 1, )
0= Iag [\PS] N ’
Ké 0 772 1

|1 1
Dl_dlag ?JlNOIK_EJlNl ’ (51)
and find
D; itO/N
M= livoN D;/ (%2
in the four cases. An easy calculation yields
t2 N
— — 1/2] -1 -
R;jj/(t,0)=det I+ ij OD;, 0
_ 1 1 t2 -1 -1
=ex —Etrln 1N+@Dj ODJ-, o
(53
which leads in the larg8l limit to
2,
Rjjr(t,O)Zexp<—%t2>. (54)

The effective second momeﬁljzj, of the operatoi© is de-
fined by

(')_2.:1

~1,n—1

Hence, by performing the Fourier transform in E45), we
arrive at

ij'(Wif):G(Wif,szjrllz , (56)
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50=[(1— 0172+ n*921 B2+ 27 (1— 917°) 9182,

not come as a surprise. The crucial and nontrivial result of

this calculation is the explicit form of the effective second

moments(55). Denoting the second moments of the blocks

in the operatorK28) by
(’)2(')——l trO%j), j=0,1
] - N2 ] ] ]_ ydy

(57)

1
ogocziﬁtnogoc,

we find after a simple computation in the four cases

02=k5B20%(0) + n*B2O(1) + 2k3 9> BEO L0,

=7 B| (0)+K1,3| 2(1)+2K i BCOCOC:
L (58
02= k2P BLOX0)+ K3 BIOA(1)

+ (k23 + 1) BEO L0,
2 _ 2
010_001'

The distributionsP;;, (W) of Eq. (56) describe Cases

(Mjj"). These were defined by assuming that the structure

of the initial and final states, i.e., their place of origin in the
matrix (36) is known. In a set of experimental data, this
information is usually lacking. Thus, the full distribution
must be a proper superposition of the functidfs (W;;).

The weights in this superposition can be easily constructed:

In Case(MO00), there areN, states and therefordly(Ng
—1) transitions. We recall that we exclude recoupling tran-
sitions withi=f. Since, altogether, there ai states and
N(N—1) transitions, the weight of Casd00) is Ng(Ng
—1)/N(N—1), which yleldsg0 for Iarge level numbers. In
Case (M11), one obviously findsg?. Similarly, we find
NoN1/N(N—1), i.e.,gqg9; for large level numbers, in both
of Cases(M01) and (M10). Thus, collecting everything we
eventually end up with

P(Wir) =g3G (Wi ,035¥2) + g2G(Wis 03,19

+29091G(Wi, 03,12, (59
where the individual variances are explicitly given in Eg.
(58).

The choice of the transition operat6érin Sec. IV B im-
plies that the second moments of the blocks in 28) are
(for largeN;)

O%(j)=Nj/N*=gf, j=0. (60)
and
NoN;
OL0c= NE =0091- (61)

Inserting this and the definitioiid2) of the functions
«j(n) into (58) leads to

1=[(1— 9072+ n*d1 B+ 29*(1—gon*)GoBE, (62

02,= (129001 72) 72 B2+ (1~ n?+ 20091 7") BE.

Let us specialize these results to the case of the numerical
simulation in Sec. IV B and see whether both are in qualita-
tive agreement.

The numerical simulation has been performed with
=N,, whence

1

9175 (63

Jo=

Since the total strength of the operatfris immaterial, see
the discussion of Eq.29), one can seB;=1 which makes

Bc=pB. All this turns Eqgs.(62) into the more transparent
expressions

Ogozl_< n°— —7]4)(1—,32),

O 0001

(64)
— 1
O05=1-|1-n*+ 3 77 (1-8%),
02,=0%,

If B=1, the operatol28) completely mixes configura-
tions with different isospin. In this case, Eq64) yield

0% 0%-08,- 0% (69
The distribution(59) of W;; then becomes
P(Wi)=G(W;,1), (66)

i.e., a Gaussian for aly and, hence, for allv. This qualita-
tively agrees with the results of the numerical simulation, see
Table I.

If a=1 (and Ng=N,), the Hamiltonian(23) is a full
GOE matrix and its eigenstates have no isospin symmetry.
According to Eq.(40), one then hag)?=1, Eqgs.(64) yield

— — — — 1
03020512031205025(14',32), (67)
and the distributior{59) becomes
1 1/2
P(wif>=G(wif,§(1+ﬁz>} ) (69)

i.e., a Gaussian for al8. Again this qualitatively agrees with
the results of the numerical simulation, see Table I.

If neither the Hamiltonian(23) nor the operaton28)
mixes isospin, i.e., if3 and 7 are zero, Eqs(64) give

2 _m2
Oo0=On
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FIG. 6. A distribution of the transition matrix elemeniy; . P . . . .
The histogram is due to the numerical simulation described in Se -Iayed In Fig. 1, does carry a signature of isospin breaking,

IV B. The curve is the qualitative modé€b9) with the parameters h order to Ve.my this, we Compare_ln the present section the
random matrix model to the experimental data.

(7D. The parameters of the random matrix model are chosen as
— — follows. The dimensiondly, N, of the blocks in the Hamil-
05:=01=0. (69 tonian(23) are not equal. Rather one has

In this limit, the distribution(63) takes the form No/N;=3 (72
- hich imatel ds to the ratio of the densiti

P(W:) = =[G (Wi 1)+ S(W:o) . 70 which approximately corresponds to the ratio of the densities
(Wir) 2[ (Wi, )+ 6(Wie) (70 of states withT=0 andT=1 in 2Al. This entails

This says that half of the transition matrix elements is zero, 3
namely the ones whereand f have different isospin. The go=Z, 0:=
other half is Gaussian distributed. This result is expected and
agrees with the numerical simulation, see Table | and Fig.
2(a).

In Fig. 6 the distribution ofW;; is displayed for the mix-
ing parametergr=0.003 andB8=0.06. The histogram is the
result of the numerical simulation in Sec. IV B. The curve is
the qualitative mode(59). The parameters follow from Eq.
(43) which yields7?=0.0189 and from Eqg64) which give

(73)

The parameter which quantifies isospin breaking in the
Hamiltonian was set ta.=0.028. This value has been taken
from the analysis of the eigenvalue statistics in RBf. We
must convert it to the parameterof the qualitative model of
Sec. V. However, so far it is not clear whether E¢3)
applies because that function is based on a numerical simu-
lation with Ng=N; which is different from(72). We have
0Z-07-0.981 therefore performed another numerical simulation of the dis-
00 117 X-FEE tribution of the eigenvector coefficiens This simulation
— — (7)) was done withNy=150 andN;=50. For each, the func-
051=01,=0.0223. tion (37) was again compared to the numerical distribution of

o I a and the optimumz was determined. This yielded the
This illustrates that the qualitative model reproduces the ez jcses on Fig. 7. It turns out that the functiGi®) again

Sentla_lbfea;]tures of the _nurlnencal data although it does nofenrogyces the numerical data if one considers only the range

escribe them quantitatively. of \=a/D=1. Note that in the case at hand, the level dis-
tance is

VI. INTERPRETATION OF THE EXPERIMENTAL DATA

In Sec.VI A, the experimental data described in Sec. Il are D=0.192. (74)

compared to the prediction of the qualitative solutié8) of
the model of Sec. IV A. In Sec. VI B, we discuss the effect
that symmetries other than isospin have on the data. Pari
conservation is used as an example.

For A\=a/D>1 the function(43) does not reproduce the
ta of Fig. 7 because the Hamiltonig?8) does not become
GOE matrix for any value ot if Ng# N;. Due to Eq.(74)

the numerical constant in E¢43) is no longer equal to the

. .. e level distance.

A. Isospin breaking in “°Al One finds
The results of Secs. IV and V suggest that the distribution
of the reduced electromagnetic transition probabilities, dis- 7?=0.163 (75
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1.0 [ T T T T | T T T T | Izsl T T ] O_(Z)O: 0.0782’
- B(XL,7) values in “Al A
| — Porter—Thomas ] R
> 08 —— T=IV ] 02,=0.235, (79
2 F—— 7=IS .
‘(/J B T —_—
g i ] 02,=0.847.
o 06 B N
> r ] This gives the distribution59) of the isovectorial matrix
= L _ elementsWi; . Again this distribution is transformed to the
a 04 - 7 variable(77). The result is the dashed curve on Fig. 8.
2 C ] One sees that both the distribution witk: IV and the one
o - A with 7=1S are shifted with respect to the Porter-Thomas
Q02 _};/:"/' I W distribution (9). This is a consequence of the appearance of
Z i Gaussian distributions with different widths in E&9). The
T shoulder on the right-hand side of the isovector distribution
00 5 ) o | in Fig. 8 even hints to the appearance of two peaks as in the

7 numerical simulations in Figs.(B) and 3c). However, in
26Al, isospin mixing is too larggnamely,\ =0.146) as to
FIG. 8. The distribution of reduced transition probabilities in let the peaks Separa’[e_ Remember that it is the class of small
26A| The expel’imental hIStOgram is the same as in F|g 1. The fullmatrlx elements that produces the peak Wh|Ch |S Centered at
curve is the Porter-Thomas distributi¢®). The remaining curves negative values af. The class of large matrix elements leads
have been obtained with the qualitative mo@&®9). The dashed to a peak which is centered closeze0. The smaller the

C.‘:_Ne_labet'edf;'vd_?zs bhee; Obtai”eld g‘g}:gdtlge i_SO‘]feCto';;ran' relative strength of the small matrix elements is, the more
sition operator; e dot-aashed curve—Iial —IS Trom e Clearly the peakS Separate

isoscalar transition operator; the dotted curve—lab&led-is the There is a factor other tham (or 52) which determines

weighted sum of both. the shape of the distributions on Fig. 8. For the isoscalar
for the present case GFAl problem the class of the large matrix elements is the one with

Due to the fact thaf®Al is a mirror nucleus, i.e., it has the vgrie}ncgogo, See qus(76). It has the largest weight in the
isospin projectionT,=0, the transition operator is uniquely distribution, namelyg, see Eqs(59) and(73). Therefore the
determined by its isospin structure. distribution is shifted only slightly to negative values of

If O is isoscalar it can by definition not connect statesFor the isovector problem the class of the small matrix ele-
with different isospin. The parametg in Eq. (28) is then ~ ments is the one with varian@3, see Eqs(78), which has
zero and, of course8=0. If the operator is isovectorial it the largest weight. Therefore the distribution is shifted more
cannot connect states with the same isospin. This is obviowgrongly to negative values af This makes the isovector
for states having =0. For states having=1, this follows matrix elements more sensitive to isospin breaking than the
from the symmetry properties aP in isospin space. See isoscalar matrix elements.

Chap. 9 of Ref[16], especially the discussion following Eq. The distributions for the isovector and isoscalar cases
(9.107. The parameteg, in Eq.(28) is then zero. We evalu- have been summed with the weights 530 and 343, respec-
ate the distributior{59) for these two cases. tively. These are the numbers of observed transitions, see

Let the operatoK) be isoscalar, whencg-=0. We set Ref.[9]. The result is the dotted curve on Fig. 8. It is shifted

B,=1, make use of Eq$77) and(79), and obtain from Eqgs. With respect to the Porter-Thomas distribution by about the
(62 same amount as the experimental data. However, the data are

more strongly peaked arounz~-—0.5 than the present
@_(2)0: 0.922, theory. This discrepancy must be attributed, at least partially,
to the way the detection thresholds have been taken into
account, see Eq10): The percentage of undetected transi-
tions may have been underestimated because its estimation
— — was based on the Porter-Thomas distribution. The distribu-
O pn=01,=0.153. tions that include isospin violation predict a larger probabil-

o o ) ) ity of events outside the range of the experimental data than
This gives the distributior{59) of the isoscalar matrix ele- {ges the Porter-Thomas distribution.

0%,=0.785, (76)

mentsWi; . It is transformed to the variable We conclude that the present investigation supports the
conjecture of Ref[9] which attributes the discrepancy be-
W5 tween the Porter-Thomas distribution and the experiment to
z= lleOﬁ- (77 partial isospin breaking irf°Al.
if

The result is the dot-dashed curve on Fig. 8. B. Other symmetries of the system: parity

Now let the operatol©O be isovectorial, whencg,=0. The nucleus?®Al has more than only isospin symmetry.
We chooseB-=1, use Egs(75) and(73), and obtain from Especially there are quantum numbers that are exactly con-
Eq. (62 served or nearly so. For definiteness let us discuss parity
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conservation. Should it be included into all the above conby the experimental material at hand and the symmetry that
siderations that have focused on isospin conservation alon&®e had in mind. The data consist of a set of reduced electro-
The matrix model of Sec. IV A can be extended to takemagnetic transition probabilities in the nucled®l. The

parity into account. If the system has two possible values o§ymmetry is isospin conservation. Eletromagnetic transition

isospin T=0,1 (isospin being broken to some exter@ind  operators are in general not isospin conserving.

parity m=*1 (parity being a very well conserved symme- A numerical simulation has shown that neither the com-

try), the HamiltonianH as well as the operata® can be  ponents of the eigenfunctions nor the transition matrix ele-

written in the following block form: ments follow Gaussian distributions. This is counterintuitive
since the central limit theorem seems to require Gaussian
distributions if the wave functions are “sufficiently compli-

0 1 0o 1 cated.” Instead, the numerical simulation suggests that the

ensembles of both, the components of the eigenfunctions and
O L ] the transition matrix elements, comprise at least one class of

+

small elements and one class of large elements. The physical
. origin of these classes is clear: The small elements are isos-
(79 pin violating; the large elements are isospin allowed. At best,
each of the classes has a Gaussian distribution. The probabil-
0 :' E:l - L ity density of the whole ensemble is then a superposition of
- L Gaussians with different parameters.
1 | J | | f 5 j - This idea has been worked out in detail and results in a
qualitative analytical evaluation of the random matrix model.
It yields simple formulas for the parameters of the Gaussians.

The four larger blocks are related to parity symmetry: TheltS practical use is to circumvent easily the demanding nu-
two blocks on the diagonal correspond to transitions betwee1€rical simulations. Conceptually, it offers to see in detalil

positive- and negative-parity configurations, respectively.Why the premises of the central limit theorem are not given:

The off-diagonal blocks correspond to parity-violating tran-the elements in the diff(_erent classes depend in differ_ent ways
sitions. They are zero in the present context. on the symmetry-breaking parametess well as the dimen-
Each of the larger blocks is broken down into four smallerSion N of the space. It is well known that in the limit of

blocks related to isospin symmetry. They correspond, in an> an ever smaller value af suffices to make the above
obvious way, to isospin conserving and isospin vioIatingF'assleS _|nd|_st|ngU|shabI(_a and thus to produce simple Gauss-
transitions. ian distributions of the eigenvector components and the tran-

The “color” of the blocks schematically shows the sition matrix elements. However, this is what happens i§
strength of the matrix elements. The black blocks contairfakeén to infinity such that the parameter-a/D goes to
large matrix elements, allowed by both isospin and parwnflmty. If Nis finite or if it is taken to infinity together with
conservation. The dotted blocks contain small matrix ele@—0 such tha remains finite, then the above mentioned
ments, allowed by parity conservation but forbidden by isosclasses conserve their identity. It is this situation which the

pin conservation. The white blocks contain zero matrix elePresent paper deals with. _
ments, forbidden by parity conservation. The present results thus support a conjecture formulated

Since in the present context parity is considered an exadf Ref.[9] on the basis of the data collected froffAl: The
symmetry, the experimenters do not try to measure parityduthors conjectured that the distribution of the electromag-
violating transitions. They assume them to be zero and—thi§e€tic transition probabilities carries the signature of partial
is the important point—they do not even list them on theiriSOSpin breaking. The present theory offers a qualitative un-
records. Hence, the experimental data set consists of the mgérstanding of the data. Whether it can quantitatively repro-
trix elements in the two larger diagonal blocks. They are thugluce the data remains to be seen. We have not attempted to

equivalent to the data that we have assumed in all foregoinfit the theory to the data. _
considerations. A caveat seems necessary: The random matrix m@adg!

Hence, the existence of exactly conserved quantities i@PPlies to any partially broken quantum number—it is not
addition to the partially conserved isospin quantum numbegPecific for isospin. Certainly, the available information on
is irrelevant if they are not measured. The existence of parSOSpin breaking irF°Al requires that the distribution of the
tially conserved quantum numbers other than isospin wouldransition probabilities differs from a Porter-Thomas distri-

1

however, alter the above results. bution to the extent given by the dotted curve on Fig. 8—but
the data may in principle and in addition carry the signature
VIl. SUMMARY AND CONCLUSION of other partially conserved quantum numbers. These may

not be as fundamental as isospin but rather given by the

In the present study the effect of a partially broken sym-specific form of the effective nucleon-nucleon interaction in
metry has been investigated for the distributions of waveihe sd shell.
function components and transition probabilities. This has Very recently, an analytical calculation, based on the su-
been done by means of a random matrix model similar to th@ersymmetry method, of the wave-function statistics in
one introduced by Rosenzweig and Poftg} However, in  coupled chaotic systems was presented in REf]. These
the present model not only the Hamiltonian but also the tranresults are valid for the case of broken time-reversal invari-
sition operator may break the symmetry. This was dictateéince and therefore, unfortunately, are not applicable to the
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