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Impact of isospin breaking on the distribution of transition probabilities

C. I. Barbosa, T. Guhr, and H. L. Harney
Max-Planck-Institut fu¨r Kernphysik, Postfach 103980, 69029 Heidelberg, Germany

~Received 22 November 1999!

In the present paper we investigate the effect of symmetry breaking in the statistical distributions of reduced
transition amplitudes and reduced transition probabilities. These quantities are easier to access experimentally
than the components of the eigenvectors and were measured by Adamset al. @Phys. Lett. B422, 13 ~1998!#
for the electromagnetic transitions in26Al. We focus on isospin symmetry breaking described by a matrix
model where both the Hamiltonian and the electromagnetic operator break the symmetry. The results show that
for partial isospin conservation, the statistical distribution of the reduced transition probability can considerably
deviate from the Porter-Thomas distribution.

PACS number~s!: 05.45.2a, 24.60.Lz, 11.30.Er
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I. INTRODUCTION

The spectral fluctuations in a rich variety of differe
physical systems show, if measured on the scale of the l
mean level spacing, very similar features. This high deg
of universality makes it possible to describe these fluct
tions with random matrices. Random matrix theory~RMT! is
a simple, schematic model in which the matrix elements
the Hamiltonian in some basis are replaced with rand
numbers. Apart from randomness, the only further input
the symmetries and invariances of the system, in partic
time reversal invariance. It turns out that this assumption
full ergodicity or ‘‘chaoticity’’ leads, in many cases, to
complete and parameter-free description of the spectral fl
tuations. Such universal cases are said to be of the Wig
Dyson type. We refer the reader to the reviews in Refs.@1,2#.
Originally, Wigner had developed this approach in nucle
physics where it continues to find new applications.

In recent years, interest has been focused on deviat
from the universal, parameter-free Wigner-Dyson fluctu
tions. The deviations can have different reasons, such
regular effects competing with full chaoticity or the breaki
of time-reversal invariance, see Ref.@2#. Here, we wish to
discuss deviations attributed to the breaking of isospin s
metry. We recall that symmetries such as isospin or pa
are, in contrast to time-reversal invariance, associated
quantum numbers. In the context of spectral fluctuations
RMT, symmetry breaking already received broad intere
see the compilation in Ref.@2#. As early as 1960, Rosen
zweig and Porter@3# analyzed atomic spectra by setting up
general random matrix model which describes crosso
transitions between different angular momentum coupl
schemes. In the late eighties, Mitchellet al. @4# measured
and analyzed about 100 low-lying states with known valu
of the isospin quantum number in the nucleus26Al. In Ref.
@5#, this was discussed in the framework of a random ma
model which is a special case of the Rosenzweig-Po
model. An estimate for the statistical Coulomb matrix e
ment, i.e., a measure for the degree of isospin break
could be obtained. Motivated by similar questions in mole
lar physics, Leitner and co-workers@6# performed a pertur-
bative calculation of the spectral fluctuations in the rand
matrix model. More recently, additional data were obtain
in two statistically highly significant experiments on th
PRE 621063-651X/2000/62~2!/1936~14!/$15.00
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breaking of a point-group symmetry in a resonating qua
block @7#, and the coupling of two chaotic microwave bi
liards @8#. Both cases, although physically very different, a
statistically fully equivalent to symmetry breaking in qua
tum mechanics. Importantly, there is only one parameter
tering the random matrix model. It is a unique measure, e
for the root-mean-square statistical Coulomb matrix eleme
This illustrates that the random matrix model is the ideal t
to extract a root-mean-square symmetry-breaking matrix
ement from the data.

All these studies addressed thespectralfluctuation prop-
erties. Symmetry breaking, however, will also have an i
pact on the statistics of thewave functionsand observables
sensitive to them. Recently, Adams, Mitchell, and Shrin
@9# collected reducedg-ray transition probabilities from dif-
ferent experiments on26Al. As mentioned above, this
nucleus had already shown a strong deviation of thespectral
fluctuations from the universal Wigner-Dyson result due
isospin breaking@4#. The new results@9# show that the dis-
tribution of thetransition probabilities also considerably de
viates from the Wigner-Dyson statistics, i.e., from the dis
bution that corresponds to full, parameter-free ‘‘chaos.’’
the present contribution, we wish to discuss these results
this end, we extend the random matrix model of Ref.@5# to
discuss transition probabilities. Similar investigations we
performed simultaneously and independently by Ander
et al. @10# for symmetry breaking in acoustic and elastom
chanical systems.

This paper is organized as follows. In Sec. II we brie
review the experimental results on the reduced transi
probabilities in26Al collected by Adams, Mitchell, and Shri
ner @9#. In Sec. III we discuss the random matrix model
the case that no symmetry is present, in particular its pre
tions for transition probabilities. The random matrix mod
for isospin breaking is numerically studied in Sec. IV.
Sec. V the numerical simulation is approximated by a qu
tative albeit analytical model. The data analysis is perform
in Sec. VI. The summary and conclusion are presented
Sec. VII.

II. EXPERIMENTAL RESULTS

Experimental reduced electromagnetic transition streng
between the excited states of the nucleus26Al have been
1936 ©2000 The American Physical Society
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collected by Adams, Mitchell, and Shriner, see Ref.@9#.
Their data involve levels between the ground state and
excitation energy of 8.067 MeV. In this region, states w
isospinT50 andT51 are found and isospin is known to b
approximately conserved.

The probabilityBi f of a transition from the initial con-
figuration u i & to the final configurationu f & is the square

Bi f 5uWi f u2 ~1!

of the matrix element

Wi f 5^ f uOu i & ~2!

of the relevant transition operatorO in a special basis.
Approximately 180 levels and 1500 electromagnetic tr

sitions are known. The fluctuations of theBi f values shall be
studied. To this end, their systematic dependence on
quantum numbers of the initial and final states must be
moved. This has been done in Ref.@9# in the following way.
The states in26Al have been characterized by their excitati
energyE, spin J, parity p, and isospinT. Transitions are
characterized by their electromagnetic characterX which
may beE or M, their multipolarityL, and a labelt which
becomes isoscalar~IS! if DT50 and isovectorial~IV ! if
DT51. Hence, both the transition operatorO5O(XL,t)
and the transition probabilitiesBi f 5Bi f (XL,t) are functions
of X, L, andt. We shall, however, not always write all thes
arguments.

A transition sequenceis defined as a set of reduced tra
sition probabilities where the initial states have a comm
assignmentJp, T, the final states have a common assignm
J8p8, T8, and the transitions have their three defining ch
acteristics all the same. Thus the reduced transition p
abilitiesBi f 5B(Ei ,Ef) of a given transition sequence can
labeled by the energiesEi and Ef of the initial and final
states, respectively. The aforementioned secular variation
theB values were removed by normalizing them to the lo
average valuêB(Ei ,Ef)& of B(Ei ,Ef) so that the statistica
variable used further on is

y~Ei ,Ef !5
B~Ei ,Ef !

^B~Ei ,Ef !&
. ~3!

The local average is defined with the help of weighting fa
tors that are Gaussian functions of the excitation energies
doing so one must, however, remove the systematic de
dence of the local level distanceD on the excitation energy
i.e., one measures the energy in units ofD and works with a
dimensionless energy

«5
E

D
. ~4!

The details are given in Ref.@11#. The local average of theB
values of a given transition sequence is then

^B~« i ,« f !&5

(
«,«8

B~«,«8! e2(« i2«)2/8e2(« f2«8)2/8

(
«,«8

e2(« i2«)2/8e2(« f2«8)2/8

. ~5!
e
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The fact that the variance of the Gaussian functions has b
chosen equal to 4 is discussed in Ref.@11#.

It is clear that the definition of the quantitiesy
5y(Ei ,Ef) requires the necessary spectroscopic informat
for the relevant states in26Al. Furthermore, the local aver
agesD and ^B(Ei ,Ef)& require that there is a minimum
number of members in the sequences from which these
erages are derived. These restrictions have finally led in R
@9# to an ensemble of 873 values ofy.

The authors of Refs.@9,11# have found it convenient to
transformy to the logarithmic variable

z5 log10y. ~6!

The experimental distribution ofz is given by the histogram
on Fig. 1. Although the widthsDzk of the bins k
51, . . . ,18 in Fig. 1 vary, the ordinate is the probabilit
density with respect toz: The heightpk of the kth bin is

pk;
Nk

Dzk
, ~7!

whereNk is the number of cases falling into thekth bin.
Since the statesu i & andu f & are believed to be ‘‘very com-

plicated,’’ it is natural to assume that the matrix elements~2!
have a Gaussian distribution; see the discussion in Sec. I
This entails thaty has a Porter-Thomas distribution with un
average value, i.e.,

P~y!5
1

A2p

exp~2y/2!

Ay
. ~8!

Transforming this to the variablez yields

P~z!5
ln ~10!

A2p
10z/2 exp~210z/2!. ~9!

FIG. 1. The distribution of experimental reduced transiti
probabilitiesB(XL,t) in 26Al from Ref. @9#. The quantityB has
been transformed to the logarithmic variablez of Eq. ~6!. The curve
labeled Porter-Thomas is the distribution~9!.
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A comment on the notation is in order: For every probabil
density we shall use the symbolP. The fact that we deal with
different functions will be clearly indicated by the argume
of the probability density in question.

The distribution~9! is given in Fig. 1 for comparison with
the data. The distribution~9! is normalized to unity; the his
togram of the data, however, has been normalized to

(
k51

18

pkDzk50.83 ~10!

by the authors of Ref.@9#. This is motivated@12# by the fact
that*dz P(z) over the range of the data amounts to 0.83 a
approximately takes care of the upper and lower detec
thresholds.

The point of Ref.@9# is the shift of the experimental dis
tribution with respect to the Porter-Thomas distributi
P(z). The maximum of the histogram occurs aroundz5
20.5. The maximum ofP(z) occurs atz50. The authors of
Ref. @9# have conjectured that the discrepancy between
experimental data and the Porter-Thomas distribution ma
a consequence of isospin breaking in26Al. The following
sections of the present paper focus on this conjecture. In
next section, a random matrix model of isospin violation
and more generally of symmetry breaking—is presented

III. RANDOM MATRIX MODEL — THE CASE OF NO
SYMMETRY

In Sec. III A, we briefly review the distributions of wav
functions and widths for the standard Wigner-Dyson case
which no symmetry is present. A more detailed presenta
with further references can be found in Ref.@2#. In Sec. III B,
we work out the distribution of the transition matrix elemen
for the same case.

A. Wave functions and decay amplitudes

If the system is invariant under time reversal, the wa
functions can be chosen real and theN3N random matrixH
modeling the Hamiltonian is real and symmetric. The mat
elements are Gaussian distributed random numbers andH is
said to be in the Gaussian orthogonal ensemble~GOE!. In
the physically relevant limit of infinitely many states,N
→`, the fluctuation properties are of Wigner-Dyson type.
wave function is modeled by an eigenvectorui , i
51, . . . ,N of H, i.e., we haveHui5Eiui , whereEi is the
eigenenergy.

We are interested in the probability densityP(a) of find-
ing the valuea with 21<a<11 for a componentuim of the
eigenvectorui . For finiteN one finds

PN~a!5
G~N/2!

ApG„~N21!/2…
~12a2!(N23)/2. ~11!

The second moment of this distribution isa251/N. For a
large number of levels one obtains a Gaussian with varia
1/N, i.e.,

PN~a!5A N

2p
expS 2

N

2
a2D5G~a,N21/2!. ~12!
t
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Here, we have introduced the notationG(a,s) for a Gauss-
ian with variances2.

The wave functions are rarely accessible in an exp
ment. However, other observables, such as scattering m
elements or partial widths, sensitively depend on them. C
sider the scattering from a statei with wave functionui into
a channelc with channel wave functionxc . The correspond-
ing reduced partial width amplitudeg ic can be written as

g ic5 (
m51

N

uimJmc , ~13!

whereJmc is the overlap integral between themth canonical
basis vector andxc . Again, the probability density can b
worked out

P~g!5
G~N/2!

~pNg2!1/2G„~N21!/2…
S 12

g2

Ng2D (N23)/2

,

~14!

where we suppress the indicesi andc. The second momen
readsg25g ic

2 5N21(m51
N Jmc

2 . We notice that the functiona
form of this distribution agrees with that of Eq.~11!. Thus, in
the limit of largeN, one again finds a Gaussian. Usually, o
introduces the partial widthG5g2 which can be measured
The relative partial widthy5G/Ḡ with Ḡ5g2 is distributed
according to the Porter-Thomas law~8!.

We notice that the Porter-Thomas law or, equivalen
the Gaussian for the partial width amplitudesg, results from
a largeN expansion of the distribution~14!. Alternatively,
one may derive these largeN results by using the centra
limit theorem: The partial width amplitudes are, according
Eq. ~13!, given as a linear combination ofN components
uim . If, as assumed in Eq.~14!, all these components ar
independently distributed, the distribution of the part
width amplitudes approaches a Gaussian for largeN. This
line of arguing does not use the fact that the distribution
every single componentuim is Gaussian for largeN. It would
apply for any smooth distribution ofuim , provided it does
not sensitively depend onN. This subtle point will be impor-
tant in Sec. IV A.

B. Transition matrix elements

The results compiled in Sec. III A apply to the parti
widths and to their amplitudes. However, in the experime
on 26Al, electromagnetic transition probabilitiesBi f (XL)
were measured which are squares of transition matrix
ments according to Eqs.~1! and ~2!. In Refs. @13,14# it is
argued that the distribution of the transition matrix eleme
Wi f is, once more, of the form~11! and ~14!. In the present
section, however, we give a derivation, valid for largeN,
which is well suited for the discussion of isospin breaking
Sec. IV.

In our model the initial stateu i & and the final stateu f & are
represented by the eigenvectorsui anduf , respectively. The
electromagnetic transition operatorO(XL) is modeled by
one fixed random matrix. It is not necessary to consider
ensemble of such operators. Thus, the transition matrix
mentsWi f (XL) are given by
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Wi f ~XL!5uf
T O~XL! ui5(

nm
uf nOnm~XL!uim . ~15!

The transition probabilities readBi f (XL)5uWi f (XL)u2. Al-
though these quantities differ from the partial widths a
their amplitudes, it is intuitively obvious that, for largeN, the
Wi f (XL) are Gaussian distributed and that theBi f (XL) obey
a Porter-Thomas law: Since we always consideriÞ f , the
Wi f (XL) are linear combinations of~products of two! inde-
pendent variables and, therefore, the central limit theo
applies.

More precisely, the distribution of the matrix elemen
Wi f reads

P~Wi f !5E d@ui #P~ui !E d@uf #P~uf !d~Wi f 2uf
TOui !,

~16!

where we suppress the argumentXL of Wi f andO. Since we
may assume thatN is large, the distributions of the compo
nentsuim anduf m take the form

P~u!5 )
m51

N A N

2p
expS 2

N

2
um

2 D
5SA N

2p D N

expS 2
N

2
uTuD ~17!

with u standing for eitherui or uf . We notice that the inte-
gration domain for each of the eigenvector components is
interval @21,11#. However, since we consider the largeN
limit, the distributions~17! are so sharply peaked at the o
gin that we may extend the domain of integration to t
entire real axis. Using the Fourier transform of thed function
in Eq. ~16! we have

P~Wi f !5
1

2pE2`

1`

dt exp~ i tWi f !R~ t,O!. ~18!

The Gaussian integrals absorbed inR(t,O) can be done eas
ily,

R~ t,O!5SA N

2p D 2NE d@ui #E d@uf #

3expS 2
N

2
@ui

T uf
T#F 1N itO/N

itO/N 1N
GF ui

uf
G D

5det21/2~1N1t2O 2/N2!

5expF2
1

2
tr ln~1N1t2O 2/N2!G . ~19!

We are interested in largeN. This allows us to expand th
logarithm and to keep only the first term which ist2O 2/N2.
Thus we have for largeN,

R~ t,O!5expS 2
O 2

2
t2D , ~20!

where the second moment of the operator is defined by
m

e

O 25
1

N2
tr O 2. ~21!

We assume that the matrix elementsOnm(XL) do not depend
on N. Hence, collecting everything, the Fourier transform
Eq. ~18! yields

P~Wi f !5G~Wi f ,O 2 1/2
!, ~22!

which is the expected result.

IV. RANDOM MATRIX MODEL — THE CASE
OF ISOSPIN BREAKING

In Sec. IV A, the model is set up for the case that isos
is partially conserved. In Sec. IV B, numerical simulatio
are described. Note that we speak of isospin breaking
cause we have in mind the experiment of Sec. II. The mo
however, applies to any other quantum number that is p
tially conserved.

A. Definition of the model

We consider two isospin valuesT50 andT51. If isos-
pin were fully conserved, the HamiltonianH would be block
diagonal. The Coulomb interaction, however, destroys t
symmetry. In Ref.@5#, this was modeled by using random
matrices of the form

H5FH~0! 0

0 H~1!
G1aF 0 HC

HC
T 0 G , ~23!

whereH( j ), j 50,1 are independent GOE matrices with d
mensionNj . The total level number isN5N01N1. The
N03N1 matrix HC accounts for the Coulomb interaction.
is real without further symmetries and has Gaussian dist
uted entries. In this model the parametera is proportional to
the root-mean-square Coulomb matrix element. SinceH( j )
andHC have positive and negative entries with equal weig
all observables can only depend on the modulus ofa, but not
on its sign. Thus, in the sequel, we restrict ourselves toa
>0. We recall that thespectralfluctuations are measured o
the scale of the local mean level spacingD. Thus, the rel-
evant parameter governing the spectral fluctuations is

l5a/D. ~24!

For a50 we have a noninteracting superposition of tw
independent GOE’s. In this case, the distribution of the
genvector components of thefull matrix H, i.e., including the
many exact zeros, is given by

PN0N1
~a,0!5g0

2PN0
~a!1g1

2PN1
~a!12g0g1d~a!, ~25!

where we have introduced the fractional level numbers

g05N0 /N and g15N1 /N. ~26!

The distributionsPNj
(a), j 50,1 have to be taken as eithe

Eq. ~11! or Eq. ~12!. Obviously, the total distribution
PN0N1

(a,0) is properly normalized.
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As discussed in Ref.@5#, the variances of the distribution
for the matrix elements are chosen in such a way that
spectra ofH(0) andH(1) have the same length and thatH
becomes a fullN3N GOE matrix @15# for a51 if N0
5N1. This also means that

PN/2,N/2~a,1!5PN~a!. ~27!

For a51 but N0ÞN1 there are some deviations from th
pure GOE results.

For arbitrarya, the distributionPN0N1
(a,a) is not known

analytically. A qualitative model is presented in Sec. V@see
Eq. ~37!#.

The transition matrix elementsWi f (XL) and the corre-
sponding transition probabilitiesBi f (XL) depend not only on
the eigenstatesui of H, but also on the transition operato
O(XL). Since the latter contains the effective charges or
magneticg factors of proton and neutron, it causes isos
breaking in addition to the isospin breaking built into E
~23!. Thus, in the same isospin basis that was used in
~23!, we may model the transition operator by a matrix of t
form

O5b IFO~0! 0

0 O~1!
G1bCF 0 OC

O C
T 0 G . ~28!

Here, each of the matricesO( j ), OC will be modeled by
one fixed random matrix—as described in Sec. IV B. F
later convenience,O has been written as a function of th
two parametersb I andbC . However, only the ratio

b5bC /b I ~29!

is important since the total strength ofO drops out of the
observabley of Eq. ~3!. For b50, configurations with dif-
ferent isospin values are not mixed byO while for b51 the
mixing is maximal. Forb→` the operatorO couples con-
figurations with different isospin only.

We are interested in the distribution of theWi f (XL) and
the Bi f (XL). According to the discussion in the previou
Sec. III, one is tempted to argue as follows: Since Eq.~15! is
general and also holds in the presence of conserved or
ken isospin, the transition matrix elementsWi f (XL) are al-
ways a linear combination of products of independently d
tributed sets of variablesuim anduf n . Thus, the central limit
theorem should apply and we should obtain a Gaussian
tribution for theWi f (XL). This should even be true for an
smooth distribution for the wave-function componentsuim
and uf n . In other words, the specific form of these latt
distributions, which are nontrivial functions of the mixin
parametera, is not important and we would always expec
Gaussian distribution for the transition matrix eleme
Wi f (XL). However, this reasoning is incorrect, because
does not make use of a specific basis. In other words:
result of this reasoning is an orthogonally invariant distrib
tion. Within the random matrix model~23! one sees that this
cannot be true. The statistical properties of the Hamilton
H are not orthogonally invariant—except for the special c
of no isospin symmetry at all. One sees the lack of ortho
nal invariance very clearly in the distribution~25! of the
eigenvector components in the casea50: Thed distribution
e

e
n
.
q.

r

ro-

-

is-

s
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e

-

n
e
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will appear only if the basis vectors have well-defined iso
pin. In general, the wave-function components are functi
of a. These functions parametrically depend onN. This N
dependence competes with a largeN expansion needed in th
derivation of the central limit theorem, whose premises
therefore violated. We illustrate this in Sec. IV B by nume
cal examples.

B. Numerical simulation

The distributions of the reduced transition amplitudes a
reduced transition probabilities were numerically inves
gated. To this end, random Hamiltonians with the struct
of Eq. ~23! have been constructed. The dimensionsN0 and
N1 were chosen to be 100 so thatH has the dimensionN
5200. The elements ofH( j ), j 50,1, were selected by a
generator of Gaussian random numbers such that the se
moments were

Hmn~0!Hm8n8~0!5dmm8dnn81dmn8dnm8 ,

Hmn~1!Hm8n8~1!5dmm8dnn81dmn8dnm8 , ~30!

~HC!mm~HC!m8m85dmm8dmm8 .

This ensures thatH is a full GOE matrix fora51. The mean
spacingD j of the eigenvalues ofH( j ) is then~in the center
of the spectrum!

D j5pNj
21/250.314. ~31!

The mean level spacingD of H is

D5~D0
211D1

21!2150.157. ~32!

This value changes little, whena is varied between 0 and
0.157. This range of values was considered in the pre
numerical simulations. The parameterl of Eq. ~24! then
covers the range of 0<l<1.0. Ten Hamiltonians were con
structed and diagonalized for each value ofl.

The transition operatorO was constructed very much a
the Hamiltonians, i.e., its elements were selected by the
dom number generator. The variances were chosen in c
plete analogy with Eqs.~30!. However, for each value ofb,
one operator has been generated. The range of 0<b<1.0
was covered.

For given parametersl, b the transition amplitudes~15!
have been calculated with the indicesi , f running over the
eigenvectors of the ten Hamiltonians. The set of 23105

numbersWi f with i . f forms the numerically generated dat
In a first step, we have checked whether these data fol

a Gaussian distribution. To this end one can bin the se
Wi f and compare the histogram to a Gaussian; similarly
can compare the distribution of the variabley of Eq. ~3! to
the distribution~8! or the distribution ofz of Eq. ~6! to P(z)
given in Eq.~9!. In order to make the comparison—as mu
as possible—independent of the parametrization of the
tistical variable, the generalized entropy

S52E dx p~x! ln
p~x!

P~x!
~33!
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has been used to express the difference between the dis
tion p of the data and the ansatzP. This expression is inde
pendent of the parametrizationx. Since both,p and P, are
normalized,S is never positive. It vanishes if and only ifp
[P. The data do not, of course, provide a continuous pr
ability densityp(x) but rather a histogram where thekth bin
is centered atxk and contributes the probabilityp(xk)Dxk .
Therefore they provide the approximation

S'2(
k

Dxk p~xk!ln
p~xk!

P~xk!
~34!

to expression Eq.~33!. To the extent that Eq.~34! is a good
approximation to Eq.~33!, expression~34! is independent of
the parametrization. This holds in the present case to wi
a few times 1024 due to the large ensemble of numeric
data. In Table I, the entropy~34! is given for a few values of
b and l in the range of 0<b, l<1. One finds that the
distribution of the data does depend on the parametersl and
b which govern the symmetry breaking. The entropy a
proaches zero, whenb or l approach unity, i.e., when th

TABLE I. Entropy for different values of the parametersb and
l. The parametera is also shown.

l
b

a
0 0.02 0.06 0.1 0.4 1.0

0 0 21.05 20.75 20.53 20.37 20.04 20.0003
0.012 0.002 20.54 20.53 20.40 20.30 20.04 20.0003
0.019 0.003 20.43 20.42 20.34 20.26 20.04 20.0003
0.031 0.005 20.35 20.34 20.29 20.23 20.03 20.0003
0.125 0.02 20.06 20.06 20.06 20.06 20.01 20.0003
1.0 0.1620.000620.000620.000620.000420.000420.0004
bu-

-

in
l

-

symmetry is strongly broken. Hence, in this case the tra
tion amplitudesWi f have a Gaussian distribution. This do
not hold if b and l have values much smaller than 1,
which case neither the Hamiltonian~23! nor the operator
~28! significantly breaks the symmetry.

Figures 2 and 3 illustrate in which way the distribution
Wi f deviates from a Gaussian. Consider the case ofb50
5l, i.e., the absence of symmetry breaking, displayed
Fig. 2~A!. There is no transition between different symme
classes and therefore about one-half of the matrix elem
Wi f vanishes. This leads to the narrow peak in Fig. 2~A!
comprising one bin centered at zero. This peak is super
posed over the distribution of the matrix elements connec
states in one and the same symmetry class. Figure 2~A! thus
corresponds to Eq.~25! with N05N1. When the symmetry is
completely broken—in Fig. 2~D!—the matrix elementsWi f
have a Gaussian distribution. Intermediate situations are
played in the parts B and C of Fig. 2.

The intermediate situation is especially well visualized
Fig. 3, where the distributions of Fig. 2 have been tra
formed to the logarithmic variable

z5 log10

Wi f
2

Wi f
2

, ~35!

which was introduced in Eq.~6!.
Here, the distribution displays two peaks. One of the

centered atz50, stems from the matrix elements connecti
states within one symmetry class. The other one, centere
negative values ofz, is due to the matrix elements connectin
states from different symmetry classes. In case of comp
symmetry breaking the two peaks merge as in Fig. 3~D!.
This distribution corresponds to Eq.~9!. In the present pa-
rametrization the case of no symmetry breaking@Fig. 3~A!#
-
e

e
s
r

FIG. 2. Numerically generated
distributions of transition matrix
elements Wi f for four different
pairs of mixing parametersb and
l. The matrix elements are nor
malized to their root-mean-squar
value. The binning of the data is
the same in the four parts of th
figure. The scale of the ordinate i
different in the upper and lowe
parts.
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FIG. 3. Distributions of nu-
merical transition probabilities
Bi f . These are the same data as
Fig. 2, but are reparametrized i
terms of the variablez of Eq. ~6!.
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cannot be distinguished from the case of complete symm
breaking@Fig. 3~D!#. This occurs becausez→2` whenW
→0; hence, the matrix elements with the valueW50 are
found nowhere on thez axis.

In Sec. II it has been described how the secular variati
of the statistical properties of the experimental data of R
@9# have been removed by help of the local average in
~3!. We have applied the same procedure to some of
present numerically generated data sets. Introducing a l
averagê Bi f & instead of the global averageWi f

2 5Bi f used in
Figs. 2 and 3 does not change the present results, i.e., a
the spectrum of eigenstates there are no secular variatio
the statistical properties of the eigenfunctions.

The numerical simulations clearly demonstrate that th
indeed is an effect of symmetry breaking on the distrib
tions. Hence, it is shown that the complexity of the wa
functions alone is not enough to ensure Gaussian distr
tions of wave function, width, and transition amplitudes, a
naive application of the central limit theorem would imply

V. QUALITATIVE EVALUATION OF THE RANDOM
MATRIX MODEL WITH BROKEN SYMMETRY

In the present section we discuss the random ma
model in a heuristic fashion. This is an extension of the S
III to the case of broken symmetry. Although we believe th
the model of Eqs.~23! and ~28! can be completely solved
analytically, we refrain from tackling that task. As we sh
see, qualitative reasoning will provide sufficient understa
ing of the statistical behavior of the observables. Thus,
analytical derivations will be approximate and only exact
some limiting cases. Of course, we shall compare our
proximate results with the above numerical simulations
the full model.

To obtain the distributionP(W) we use the ansatz~28!
ry

s
f.
q.
e
al

ng
of

e
-

u-
a

ix
c.
t

-
r

p-
f

for the transition operator and we need an ansatz for
distributions of the wave functions. The latter ones—in o
model of the eigenvector components—are the entries of
orthogonal matrixU which diagonalizes the Hamiltonian,

U5F U~0! U~01!

U~10! U~1!
G , ~36!

where the matricesU( j ), j 50,1 areNj3Nj orthogonal and
U(01) andU(10) areN03N1 andN13N0 matrices, respec-
tively, with the condition that the totalU is orthogonal. Mo-
tivated by the numerical simulations in the previous sect
and by the general experience with wave-function distrib
tions, we assume that the distributions of the entries can
approximated by Gaussians. More precisely, we estimate
the distributions of theU( j ) matrix elements are roughly
given by G(a,k jN

21/2), j 50,1, while those of theU(01)
and U(10) matrix elements are roughly given b
G(a,hN21/2). Thus, we reduce the problem to the determ
nation of the three parametersk0 , k1, andh. It is reason-
able to assume that the former two are functions of the la
one, i.e., we setk j5k j (h). This is motivated by the fact tha
h can replace the mixing parametera ~or l) and that, apart
from the level numbersN0 , N1, the distribution of the ele-
ments ofU is a function of the symmetry breaking. The fin
task is then to find the relation between the purely pheno
enological parameterh and the parametera which measures
the root-mean-square symmetry-breaking matrix element
thus has a direct physical interpretation. In other words,
eventually have to specify the functionh5h(a).

To construct a consistent guess for the functionsk j
5k j (h), we notice that, in line with our basic assumption
the combined distribution for the matrix elements of the to
U reads
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PN0N1
~a,h!5g0

2GS a,
k0~h!

AN
D 1g1

2GS a,
k1~h!

AN
D

12g0g1GS a,
h

AN
D . ~37!

This form is consistent with the exact results~25! for arbi-
trary N0 andN1 and ~27! for N05N1. We mention in pass-
ing that we always deal with Gaussian approximations
distributions which, in some limiting cases, are for fin
level number given by Eq.~11!.

Let us consider the casea50 which yields the distribu-
tion ~25!. Comparison with Eq.~37! shows that

h2~0!50 ~38!

and

k j
2~0!51/gj , j 50,1. ~39!

In the case ofa51 andN05N1, the exact result~27! leads
to

h2~1!51 ~40!

and

k j
2~1!51, j 50,1. ~41!

Moreover, the functionsk j5k j (h) ought to be even inh.
This suggests the ansatz

k j
2~h!5

1

gj
1S 12

1

gj
Dh2, j 50,1. ~42!

It is reassuring that similar combinations of parameters
also show up in exact calculations of the spectral correlat

A reasonable form for the functionh5h(a) remains to
be given. The function will parametrically depend ong0 and
g1. We construct it by comparing the ansatz~37! with the
distribution of the coefficientsuim of the eigenfunctionsui
from the numerical simulation of Sec. IV B. For each val
of l5a/D, the optimumh was determined by maximizing
the entropy~34!. We have not attempted to assign errors
the values ofh thus found. Instead we have convinced ou
selves by inspection that the ansatz~37! reproduces the nu
merical distribution reasonably well. A typical example
given by Fig. 4. In this way the functionh5h(a) was gen-
erated numerically. For the case ofN05N1 it is displayed in
Fig. 5 together with the analytical expression

h2~a!512exp~2a/0.157! ~43!

that well approximates it. The numerical constant in the
ponential is here equal to the level distance of Eq.~32!. We
emphasize, however, that the relation~43! is purely phenom-
enological. In Sec. VI we shall see that Eq.~43! can success
fully be applied to the case of26Al, where D is different
from Eq. ~32!, see Eq.~78! below, but the difference is no
too large. Thus it seems that the numerical constant is ind
related to the level distance. This quantity shows a sign
cantN dependence, see Eq.~31!. It is at this point where the
f

o
s.

-

-

ed
-

premises of the central limit theorem are violated for t
calculations of the distributions of the transition matrix e
ments. They cannot be a single Gaussian for all values of
parameters.

Having fixed all parameters in our qualitative model f
the distribution of the eigenvector components, we can n
calculate the distributions for the transition matrix eleme
Wi f 5uf

TOui . We emphasize that this involves, apart fro
the largeN limit, no further approximation. We consideri
Þ f , such that the initial and final statesui anduf are always
different columns of the matrixU in Eq. ~36!. Due to isospin
breaking, we have to distinguish four structurally differe
possibilities: in Case~M00! both ui and uf are among the
first N0 columns. We write

Case~M00!: ui5F ui~0!

ui~10!
G and uf5F uf~0!

uf~10!
G .

FIG. 4. The distribution of the componentsa of the eigenfunc-
tions ofH. The parameters of the numerical simulation are given
the figure. This yields the histogram. The curve is the function~37!
with the optimumh.

FIG. 5. The relation betweena andh2 for N05N1. The crosses
are from the numerical simulation. The curve is a phenomenolo
cal representation of the numerical results.
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In Case~M11!, both are from the lastN1 columns,

Case~M11!: ui5Fui~01!

ui~1!
G and uf5Fuf~01!

uf~1!
G .

In Cases~M01! and~M10! ui anduf are from different parts
in U; we have

Case~M01!: ui5F ui~0!

ui~10!
G and uf5Fuf~01!

uf~1!
G .

Case~M10!: ui5Fui~01!

ui~1!
G and uf5F uf~0!

uf~10!
G .

Thus, for the case (M j j 8), j , j 850,1 we will obtain a dis-
tribution Pj j 8(Wi f ). Because of the symmetriesO T5O and
Wf i5Wi f , the Cases~M01! and ~M10! must yield identical
distributions.

We proceed by generalizing the evaluation of the integ
~16! in Sec. III B. Again, the distribution

Pj j 8~Wi f !5E d@ui #P~ui !E d@uf #P~uf !d~Wi f 2uf
TOui !

~44!

is rewritten in the form

Pj j 8~Wi f !5
1

2pE2`

1`

dt exp~ i tWi f !Rj j 8~ t,O!, ~45!

where the main difficulty is the calculation of the function

Rj j 8~ t,O!5E d@ui #P~ui !E d@uf #P~uf !exp~2 i tu f
TOui !.

~46!

In Case~M00!, the distributions of the eigenvectors a
according to our ansatz

P~ui !5SA N

2pk0
2D N0

expS 2
N

2k0
2

ui
T~0!ui~0!D

3SA N

2ph2D N1

expS 2
N

2h2
ui

T~10!ui~10!D
~47!

for the initial state and

P~uf !5SA N

2pk0
2D N0

expS 2
N

2k0
2

uf
T~0!uf~0!D

3SA N

2ph2D N1

expS 2
N

2h2
uf

T~10!uf~10!D
~48!

for the final state. Case~M11! is treated similarly. Case
~M01! has a different structure: The initial-state distributi
is as in Eq.~47!, but the final-state distribution reads
l

P~uf !5SA N

2ph2D N0

expS 2
N

2h2
uf

T~01!uf~01!D
3SA N

2pk1
2D N1

expS 2
N

2k1
2

uf
T~1!uf~1!D . ~49!

However, one sees that in every case we may cast Eq.~46!
into the form

Rj j 8~ t,O!5Cj j 8E d@ui #E d@uf #

3expS 2
N

2
@ui

T uf
T# Kj j 8F ui

uf
G D

5Cj j 8
8 det21/2Kj j 8 . ~50!

HereCj j 8 andCj j 8
8 collect all normalization constants.

It is straightforward to write down the matricesKj j 8 . We
define the diagonal matrices

D05diagS 1

k0
2
1N0

,
1

h2
1N1D ,

D15diagS 1

h2
1N0

,
1

k1
2
1N1D , ~51!

and find

Kj j 85F D j itO/N

itO/N Dj 8
G ~52!

in the four cases. An easy calculation yields

Rj j 8~ t,O!5det21/2S 1N1
t2

N2
D j

21OD j 8
21OD

5expF2
1

2
tr lnS 1N1

t2

N2
D j

21OD j 8
21OD G

~53!

which leads in the largeN limit to

Rj j 8~ t,O!5expS 2
Oj j 8

2

2
t2D . ~54!

The effective second momentOj j 8
2 of the operatorO is de-

fined by

Oj j 8
2

5
1

N2
tr D j

21OD j 8
21O. ~55!

Hence, by performing the Fourier transform in Eq.~45!, we
arrive at

Pj j 8~Wi f !5G~Wi f ,Oj j 8
2 1/2!, ~56!
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i.e., at a Gaussian in all four cases. The Gaussian form d
not come as a surprise. The crucial and nontrivial resul
this calculation is the explicit form of the effective seco
moments~55!. Denoting the second moments of the bloc
in the operator~28! by

O 2~ j !5
1

N2
tr O 2~ j !, j 50,1,

~57!

O C
TOC5

1

N2
tr O C

TOC ,

we find after a simple computation in the four cases

O 00
2 5k0

4b I
2O 2~0!1h4b I

2O 2~1!12k0
2h2bC

2 O C
TOC,

O 11
2 5h4b I

2O 2~0!1k1
4b I

2O 2~1!12k1
2h2bC

2 O C
TOC,

~58!
O 01

2 5k0
2h2b I

2O 2~0!1k1
2h2b I

2O 2~1!

1~k0
2k1

21h4!bC
2 O C

TOC,

O 10
2 5O 01

2 .

The distributionsPj j 8(Wi f ) of Eq. ~56! describe Cases
(M j j 8). These were defined by assuming that the struc
of the initial and final states, i.e., their place of origin in t
matrix ~36! is known. In a set of experimental data, th
information is usually lacking. Thus, the full distributio
must be a proper superposition of the functionsPj j 8(Wi f ).
The weights in this superposition can be easily construc
In Case ~M00!, there areN0 states and thereforeN0(N0
21) transitions. We recall that we exclude recoupling tra
sitions with i 5 f . Since, altogether, there areN states and
N(N21) transitions, the weight of Case~M00! is N0(N0

21)/N(N21), which yieldsg0
2 for large level numbers. In

Case ~M11!, one obviously findsg1
2. Similarly, we find

N0N1 /N(N21), i.e.,g0g1 for large level numbers, in both
of Cases~M01! and ~M10!. Thus, collecting everything we
eventually end up with

P~Wi f !5g0
2G~Wi f ,O 00

2 1/2!1g1
2G~Wi f ,O 11

2 1/2!

12g0g1G~Wi f ,O 01
2 1/2!, ~59!

where the individual variances are explicitly given in E
~58!.

The choice of the transition operatorO in Sec. IV B im-
plies that the second moments of the blocks in Eq.~28! are
~for largeNj )

O 2~ j !5Nj
2/N25gj

2 , j 50,1 ~60!

and

O C
TOC5

N0N1

N2
5g0g1 . ~61!

Inserting this and the definition~42! of the functions
k j (h) into ~58! leads to
es
f

re

d:

-

.

O 00
2 5@~12g1h2!21h4g1

2#b I
212h2~12g1h2!g1bC

2 ,

O 11
2 5@~12g0h2!21h4g0

2#b I
212h2~12g0h2!g0bC

2 , ~62!

O 01
2 5~122g0g1h2!h2b I

21~12h212g0g1h4!bC
2 .

Let us specialize these results to the case of the nume
simulation in Sec. IV B and see whether both are in qual
tive agreement.

The numerical simulation has been performed withN0
5N1, whence

g05g15
1

2
. ~63!

Since the total strength of the operatorO is immaterial, see
the discussion of Eq.~29!, one can setb I51 which makes
bC5b. All this turns Eqs.~62! into the more transparen
expressions

O 00
2 512S h22

1

2
h4D ~12b2!,

O 11
2 5O 00

2 ,
~64!

O 01
2 512S 12h21

1

2
h4D ~12b2!,

O 10
2 5O 01

2 .

If b51, the operator~28! completely mixes configura
tions with different isospin. In this case, Eqs.~64! yield

O 00
2 5O 11

2 5O 01
2 5O 10

2 51. ~65!

The distribution~59! of Wi f then becomes

P~Wi f !5G~Wi f ,1!, ~66!

i.e., a Gaussian for allh and, hence, for alla. This qualita-
tively agrees with the results of the numerical simulation, s
Table I.

If a51 ~and N05N1), the Hamiltonian~23! is a full
GOE matrix and its eigenstates have no isospin symme
According to Eq.~40!, one then hash251, Eqs.~64! yield

O 00
2 5O 11

2 5O 01
2 5O 10

2 5
1

2
~11b2!, ~67!

and the distribution~59! becomes

P~Wi f !5GS Wi f ,F1

2
~11b2!G1/2D , ~68!

i.e., a Gaussian for allb. Again this qualitatively agrees with
the results of the numerical simulation, see Table I.

If neither the Hamiltonian~23! nor the operator~28!
mixes isospin, i.e., ifb andh are zero, Eqs.~64! give

O 00
2 5O 11

2 51,
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O 01
2 5O 10

2 50. ~69!

In this limit, the distribution~63! takes the form

P~Wi f !5
1

2
@G~Wi f ,1!1d~Wi f !#. ~70!

This says that half of the transition matrix elements is ze
namely the ones wherei and f have different isospin. The
other half is Gaussian distributed. This result is expected
agrees with the numerical simulation, see Table I and F
2~a!.

In Fig. 6 the distribution ofWi f is displayed for the mix-
ing parametersa50.003 andb50.06. The histogram is the
result of the numerical simulation in Sec. IV B. The curve
the qualitative model~59!. The parameters follow from Eq
~43! which yieldsh250.0189 and from Eqs.~64! which give

O 00
2 5O 11

2 50.981,
~71!

O 01
2 5O 10

2 50.0223.

This illustrates that the qualitative model reproduces the
sential features of the numerical data although it does
describe them quantitatively.

VI. INTERPRETATION OF THE EXPERIMENTAL DATA

In Sec.VI A, the experimental data described in Sec. II
compared to the prediction of the qualitative solution~58! of
the model of Sec. IV A. In Sec. VI B, we discuss the effe
that symmetries other than isospin have on the data. P
conservation is used as an example.

A. Isospin breaking in 26Al

The results of Secs. IV and V suggest that the distribut
of the reduced electromagnetic transition probabilities, d

FIG. 6. A distribution of the transition matrix elementsWi f .
The histogram is due to the numerical simulation described in S
IV B. The curve is the qualitative model~59! with the parameters
~71!.
,
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played in Fig. 1, does carry a signature of isospin breaki
In order to verify this, we compare in the present section
random matrix model to the experimental data.

The parameters of the random matrix model are chose
follows. The dimensionsN0 , N1 of the blocks in the Hamil-
tonian ~23! are not equal. Rather one has

N0 /N153 ~72!

which approximately corresponds to the ratio of the densi
of states withT50 andT51 in 26Al. This entails

g05
3

4
, g15

1

4
. ~73!

The parameter which quantifies isospin breaking in
Hamiltonian was set toa50.028. This value has been take
from the analysis of the eigenvalue statistics in Ref.@5#. We
must convert it to the parameterh of the qualitative model of
Sec. V. However, so far it is not clear whether Eq.~43!
applies because that function is based on a numerical s
lation with N05N1 which is different from~72!. We have
therefore performed another numerical simulation of the d
tribution of the eigenvector coefficientsa. This simulation
was done withN05150 andN1550. For eacha, the func-
tion ~37! was again compared to the numerical distribution
a and the optimumh was determined. This yielded th
crosses on Fig. 7. It turns out that the function~43! again
reproduces the numerical data if one considers only the ra
of l5a/D&1. Note that in the case at hand, the level d
tance is

D50.192. ~74!

For l5a/D.1 the function~43! does not reproduce th
data of Fig. 7 because the Hamiltonian~23! does not become
a GOE matrix for any value ofa if N0ÞN1. Due to Eq.~74!
the numerical constant in Eq.~43! is no longer equal to the
level distance.

One finds

h250.163 ~75!

c.

FIG. 7. The relation betweena andh2 for N0ÞN1.
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for the present case of26Al.
Due to the fact that26Al is a mirror nucleus, i.e., it has th

isospin projectionTz50, the transition operator is uniquel
determined by its isospin structure.

If O is isoscalar it can by definition not connect sta
with different isospin. The parameterbC in Eq. ~28! is then
zero and, of course,b50. If the operator is isovectorial i
cannot connect states with the same isospin. This is obv
for states havingT50. For states havingT51, this follows
from the symmetry properties ofO in isospin space. Se
Chap. 9 of Ref.@16#, especially the discussion following Eq
~9.107!. The parameterb I in Eq. ~28! is then zero. We evalu
ate the distribution~59! for these two cases.

Let the operatorO be isoscalar, whencebC50. We set
b I51, make use of Eqs.~77! and~79!, and obtain from Eqs
~62!

O 00
2 50.922,

O 11
2 50.785, ~76!

O 01
2 5O 10

2 50.153.

This gives the distribution~59! of the isoscalar matrix ele
mentsWi f . It is transformed to the variable

z5 log10

Wi f
2

Wi f
2

. ~77!

The result is the dot-dashed curve on Fig. 8.
Now let the operatorO be isovectorial, whenceb I50.

We choosebC51, use Eqs.~75! and ~73!, and obtain from
Eq. ~62!

FIG. 8. The distribution of reduced transition probabilities
26Al. The experimental histogram is the same as in Fig. 1. The
curve is the Porter-Thomas distribution~9!. The remaining curves
have been obtained with the qualitative model~59!. The dashed
curve—labeledt5IV—has been obtained with the isovector tra
sition operator; the dot-dashed curve—labeledt5IS—is from the
isoscalar transition operator; the dotted curve—labeledSt—is the
weighted sum of both.
s

us

O 00
2 50.0782,

O 11
2 50.235, ~78!

O 01
2 50.847.

This gives the distribution~59! of the isovectorial matrix
elementsWi f . Again this distribution is transformed to th
variable~77!. The result is the dashed curve on Fig. 8.

One sees that both the distribution witht5IV and the one
with t5IS are shifted with respect to the Porter-Thom
distribution ~9!. This is a consequence of the appearance
Gaussian distributions with different widths in Eq.~59!. The
shoulder on the right-hand side of the isovector distribut
in Fig. 8 even hints to the appearance of two peaks as in
numerical simulations in Figs. 3~b! and 3~c!. However, in
26Al, isospin mixing is too large~namely,l50.146) as to
let the peaks separate. Remember that it is the class of s
matrix elements that produces the peak which is centere
negative values ofz. The class of large matrix elements lea
to a peak which is centered close toz50. The smaller the
relative strength of the small matrix elements is, the m
clearly the peaks separate.

There is a factor other thana ~or h2) which determines
the shape of the distributions on Fig. 8. For the isosca
problem the class of the large matrix elements is the one w
varianceO00

2 , see Eqs.~76!. It has the largest weight in the
distribution, namelyg0

2, see Eqs.~59! and~73!. Therefore the
distribution is shifted only slightly to negative values ofz.
For the isovector problem the class of the small matrix e
ments is the one with varianceO00

2 , see Eqs.~78!, which has
the largest weight. Therefore the distribution is shifted mo
strongly to negative values ofz. This makes the isovecto
matrix elements more sensitive to isospin breaking than
isoscalar matrix elements.

The distributions for the isovector and isoscalar ca
have been summed with the weights 530 and 343, res
tively. These are the numbers of observed transitions,
Ref. @9#. The result is the dotted curve on Fig. 8. It is shifte
with respect to the Porter-Thomas distribution by about
same amount as the experimental data. However, the dat
more strongly peaked aroundz'20.5 than the presen
theory. This discrepancy must be attributed, at least partia
to the way the detection thresholds have been taken
account, see Eq.~10!: The percentage of undetected tran
tions may have been underestimated because its estim
was based on the Porter-Thomas distribution. The distri
tions that include isospin violation predict a larger probab
ity of events outside the range of the experimental data t
does the Porter-Thomas distribution.

We conclude that the present investigation supports
conjecture of Ref.@9# which attributes the discrepancy be
tween the Porter-Thomas distribution and the experimen
partial isospin breaking in26Al.

B. Other symmetries of the system: parity

The nucleus26Al has more than only isospin symmetry
Especially there are quantum numbers that are exactly c
served or nearly so. For definiteness let us discuss pa

ll
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conservation. Should it be included into all the above c
siderations that have focused on isospin conservation alo

The matrix model of Sec. IV A can be extended to ta
parity into account. If the system has two possible values
isospin T50,1 ~isospin being broken to some extent! and
parity p561 ~parity being a very well conserved symm
try!, the HamiltonianH as well as the operatorO can be
written in the following block form:

~79!

The four larger blocks are related to parity symmetry: T
two blocks on the diagonal correspond to transitions betw
positive- and negative-parity configurations, respective
The off-diagonal blocks correspond to parity-violating tra
sitions. They are zero in the present context.

Each of the larger blocks is broken down into four smal
blocks related to isospin symmetry. They correspond, in
obvious way, to isospin conserving and isospin violati
transitions.

The ‘‘color’’ of the blocks schematically shows th
strength of the matrix elements. The black blocks cont
large matrix elements, allowed by both isospin and pa
conservation. The dotted blocks contain small matrix e
ments, allowed by parity conservation but forbidden by is
pin conservation. The white blocks contain zero matrix e
ments, forbidden by parity conservation.

Since in the present context parity is considered an e
symmetry, the experimenters do not try to measure par
violating transitions. They assume them to be zero and—
is the important point—they do not even list them on th
records. Hence, the experimental data set consists of the
trix elements in the two larger diagonal blocks. They are th
equivalent to the data that we have assumed in all forego
considerations.

Hence, the existence of exactly conserved quantities
addition to the partially conserved isospin quantum num
is irrelevant if they are not measured. The existence of p
tially conserved quantum numbers other than isospin wo
however, alter the above results.

VII. SUMMARY AND CONCLUSION

In the present study the effect of a partially broken sy
metry has been investigated for the distributions of wa
function components and transition probabilities. This h
been done by means of a random matrix model similar to
one introduced by Rosenzweig and Porter@3#. However, in
the present model not only the Hamiltonian but also the tr
sition operator may break the symmetry. This was dicta
-
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by the experimental material at hand and the symmetry
we had in mind. The data consist of a set of reduced elec
magnetic transition probabilities in the nucleus26Al. The
symmetry is isospin conservation. Eletromagnetic transit
operators are in general not isospin conserving.

A numerical simulation has shown that neither the co
ponents of the eigenfunctions nor the transition matrix e
ments follow Gaussian distributions. This is counterintuiti
since the central limit theorem seems to require Gaus
distributions if the wave functions are ‘‘sufficiently compl
cated.’’ Instead, the numerical simulation suggests that
ensembles of both, the components of the eigenfunctions
the transition matrix elements, comprise at least one clas
small elements and one class of large elements. The phy
origin of these classes is clear: The small elements are i
pin violating; the large elements are isospin allowed. At be
each of the classes has a Gaussian distribution. The prob
ity density of the whole ensemble is then a superposition
Gaussians with different parameters.

This idea has been worked out in detail and results i
qualitative analytical evaluation of the random matrix mod
It yields simple formulas for the parameters of the Gaussia
Its practical use is to circumvent easily the demanding
merical simulations. Conceptually, it offers to see in det
why the premises of the central limit theorem are not giv
the elements in the different classes depend in different w
on the symmetry-breaking parametera as well as the dimen-
sion N of the space. It is well known that in the limit ofN
→` an ever smaller value ofa suffices to make the abov
classes indistinguishable and thus to produce simple Ga
ian distributions of the eigenvector components and the tr
sition matrix elements. However, this is what happens ifN is
taken to infinity such that the parameterl5a/D goes to
infinity. If N is finite or if it is taken to infinity together with
a→0 such thatl remains finite, then the above mentione
classes conserve their identity. It is this situation which
present paper deals with.

The present results thus support a conjecture formula
in Ref. @9# on the basis of the data collected from26Al: The
authors conjectured that the distribution of the electrom
netic transition probabilities carries the signature of par
isospin breaking. The present theory offers a qualitative
derstanding of the data. Whether it can quantitatively rep
duce the data remains to be seen. We have not attempte
fit the theory to the data.

A caveat seems necessary: The random matrix model~23!
applies to any partially broken quantum number—it is n
specific for isospin. Certainly, the available information
isospin breaking in26Al requires that the distribution of the
transition probabilities differs from a Porter-Thomas dist
bution to the extent given by the dotted curve on Fig. 8—b
the data may in principle and in addition carry the signat
of other partially conserved quantum numbers. These m
not be as fundamental as isospin but rather given by
specific form of the effective nucleon-nucleon interaction
the sd shell.

Very recently, an analytical calculation, based on the
persymmetry method, of the wave-function statistics
coupled chaotic systems was presented in Ref.@17#. These
results are valid for the case of broken time-reversal inv
ance and therefore, unfortunately, are not applicable to
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case of conserved time-reversal invariance which is
cussed in the present paper.
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